Skip to main content

Design and Analysis of Demographic Simulations

  • Chapter
  • First Online:

Part of the book series: The Springer Series on Demographic Methods and Population Analysis ((PSDE,volume 41))

Abstract

As the many novel contributions to this volume show, Agent-Based Models (ABMs) offer exciting possibilities for including explanatory mechanisms, such as behavioural rules governing individual behaviour, in the analysis of demographic phenomena. Knowledge about the abstract statistical individual (Courgeau 2012) derived from empirical data can in this way be augmented by rule-based explanations, giving demography much-needed theoretical foundations (Billari et al. 2003).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In some cases, for instance, when the frequency of rare events are of interest, very large numbers of repetitions may be required to infer about the quantities of interest. Different approaches from those advocated here would likely be required for such problems, one of which might be to apply the analysis and calibration methods discussed in later sections to understand the behaviour of a different, more frequently observed output measure first, simplifying the problem of analysing the rare event.

  2. 2.

    Other methods of obtaining Latin hyper-cube samples are available. For instance, @Risk (www.palisade.com/risk) is an add-on for Excel which provides this functionality, as does the statistics and machine learning tool-kit (uk.mathworks.com/help/stats/lhsdesign.html) of the Matlab mathematical programming software. However, both of these are proprietary packages and not freely available.

  3. 3.

    Setting the mean function to a constant is often called ‘Ordinary Kriging’, while using a regression model is referred to as ‘Universal Kriging’ (Kleijnen 2008).

  4. 4.

    Barton et al. (2014) and Xie et al. (2014) also suggest approaches whereby input uncertainty can be propagated using meta-models in order to obtain output distributions.

  5. 5.

    In Bijak et al. (2013) and Billari et al. (2007), the respective parameters were \(\alpha\) and \(\beta\), however, to avoid confusion with the emulator mean coefficients and correlation parameters, \(a\) and \(b\) are used here.

  6. 6.

    Hankin (2005) and Roustant et al. (2012) have produced R-based toolkits to fit Gaussian processes that have influenced the code produced for this chapter. The former only deals with deterministic simulations, however.

References

  • Andrianakis, Y., & Challenor, P. G. (2011). Parameter estimation for Gaussian process emulators. Technical report, Managing Uncertainty in Complex Models. http://www.mucm.ac.uk/Pages/Downloads/TechnicalReports/

  • Andrianakis, I., & Challenor, P. G. (2012). The effect of the nugget on Gaussian process emulators of computer models. Computational Statistics & Data Analysis, 56(12), 4215–4228.

    Article  Google Scholar 

  • Ankenman, B., Nelson, B. L., & Staum, J. (2010). Stochastic kriging for simulation metamodeling. Operations Research, 58(2), 371–382.

    Article  Google Scholar 

  • Aparicio Diaz, B., Fent, T., Prskawetz, A., & Bernardi, L. (2011). Transition to parenthood: The role of social interaction and endogenous networks. Demography, 48(2), 559–79.

    Article  Google Scholar 

  • Barton, R. R., Nelson, B. L., & Xie, W. (2014). Quantifying input uncertainty via simulation confidence intervals. INFORMS Journal on Computing, 26(1), 74–87.

    Article  Google Scholar 

  • Bastos, L. S., & O’Hagan, A. (2009). Diagnostics for Gaussian process emulators. Technometrics, 51(4), 425–438.

    Article  Google Scholar 

  • Bijak, J. (2011). Forecasting international migration in Europe: A Bayesian view. Dordrecht: Springer.

    Book  Google Scholar 

  • Bijak, J., Hilton, J., Silverman, E., & Cao, V. D. (2013). Reforging the wedding ring: Exploring a semi-artificial model of population for the United Kingdom with Gaussian process emulators. Demographic Research, 29(27), 729–766.

    Article  Google Scholar 

  • Billari, F., Ongaro, F., & Prskawetz, A. (2003). Introduction: Agent-based computational demography. In F. Billari & A. Prskawetz (Eds.), Agent-based computational demography: Using simulation to improve our understanding of demographic behaviour, (pp. 1–17). Heidelberg: Physica-Verlag.

    Chapter  Google Scholar 

  • Billari, F., Fent, T., Prskawetz, A., & Aparicio Diaz, B. (2007). The “Wedding-Ring”: An agent-based marriage model based on social interactions. Demographic Research, 17, 59–82.

    Article  Google Scholar 

  • Boukouvalas, A. (2010). Emulation of random output simulators. Ph.D. thesis, Aston University. http://eprints.aston.ac.uk/15776/

  • Boukouvalas, A., Sykes, P., Cornford, D., & Maruri-Aguilar, H. (2014). Bayesian precalibration of a large stochastic microsimulation model. IEEE Transactions on Intelligent Transportation Systems, 15(3), 1337–1347.

    Article  Google Scholar 

  • Challenor, P. (2013). Experimental design for the validation of kriging metamodels in computer experiments. Journal of Simulation, 7(4), 290–296.

    Article  Google Scholar 

  • Courgeau, D. (2012). Probability and social science: Methodological relationships between the two approaches. Dordrecht: Springer.

    Book  Google Scholar 

  • Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Washington, DC/Cambridge: Brookings Institution Press/MIT Press.

    Google Scholar 

  • Fent, T., Aparicio Diaz, B, & Prskawetz, A. (2013). Family policies in the context of low fertility and social structure. Demographic Research, 29, 963–998.

    Article  Google Scholar 

  • Forrester, A., Sobester, A., & Keane, A. (2008). Engineering design via surrogate modelling: A practical guide. Chichester: Wiley.

    Book  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Abingdon: CRC.

    Google Scholar 

  • Gramacy, R. B. (2005). Bayesian treed Gaussian process models. Ph.D. thesis, University of California, Santa Cruz.

    Google Scholar 

  • Grazzini, J., & Richiardi, M. G. (2013). Consistent estimation of agent-based models by simulated minimum distance. Technical report 130, Laboratorioa Riccardo Revelli.

    Google Scholar 

  • Grimm, V., & Railsback, S. F. (2005). Individual-based modelling and ecology. Princeton: Princeton Univeristy Press.

    Google Scholar 

  • Hankin, R. (2005). Introducing BACCO, an R bundle for Bayesian analysis of computer code output. Journal of Statistical Software, 14(16).

    Google Scholar 

  • Haylock, R. (1997). Bayesian inference about outputs of computationally expensive algorithms with uncertainty on the inputs. Ph.D. thesis, University of Nottingham. http://eprints.nottingham.ac.uk/13193/1/338522.pdf

  • Kennedy, M. (2004). Descriptions of the Gaussian process model used in gem-sa. http://www.tonyohagan.co.uk/academic/GEM/index.html

    Google Scholar 

  • Kennedy, M., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society, 63(3), 425–464.

    Article  Google Scholar 

  • Kersting, K., Plagemann, C., Pfaff, P., & Burgard, W. (2007). Most likely heteroscedastic Gaussian process regression. In Proceedings of the 24th International Conference on Machine Learning, ICML ’07 (pp. 393–400). Corvallis/New York: ACM. doi: 10.1145/1273496.1273546. http://doi.acm.org/10.1145/1273496.1273546. ISBN 978-1-59593-793-3.

  • Klabunde, A. (2014). Computational economic modeling of migration. Technical Report 471, Ruhr University Bochum, Bochum.

    Google Scholar 

  • Kleijnen, J. P. (2008). Design and analysis of simulation experiments. New York: Springer.

    Google Scholar 

  • Kleijnen, J. P. C., & Mehdad, E. (2014). Multivariate versus univariate kriging metamodels for multi-response simulation models. European Journal of Operational Research, 236(2), 573–582.

    Article  Google Scholar 

  • Law, A. M. (2007). Simulation modeling and analysis (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Loeppky, J. L., Sacks, J., & Welch, W. J. (2009). Choosing the sample size of a computer experiment: A practical guide. Technometrics, 51(4), 366–376.

    Article  Google Scholar 

  • Luke, S. (2007). Finding interesting things: Population-based adaptive parameter sweeping. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (pp. 86–93), London.

    Google Scholar 

  • Mitchell, M. (2009). Complexity: A guided tour. Oxford: Oxford University Press.

    Google Scholar 

  • Montgomery, D. (2013). Design and analysis of experiments (8th ed.). Hoboken: Wiley.

    Google Scholar 

  • MUCM (2011). Managing uncertainty in complex models toolkit. mucm.aston.ac.uk

    Google Scholar 

  • Nelder, J., & McCullagh, P. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135(3), 370–384.

    Article  Google Scholar 

  • Oakley, J. (1999). Bayesian uncertainty analysis for complex computer codes. Ph.D. thesis, University of Sheffield.

    Google Scholar 

  • Oakley, J. (2002). Eliciting Gaussian process priors for complex computer codes. Journal of the Royal Statistical Society: Series D (The Statistician), 51(1), 81–97.

    Google Scholar 

  • Oakley, J., & O’Hagan, A. (2002). Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika, 89(4), 769–784.

    Article  Google Scholar 

  • Oakley, J., & O’Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: A Bayesian approach. Journal of the Royal Statistical Society: Series B, 66(3), 751–769.

    Article  Google Scholar 

  • O’Hagan, A. (2006). Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering and System Safety, 91(10–11), 1290–1300.

    Article  Google Scholar 

  • O’Hagan, A., & Oakley, J. E. (2004). Probability is perfect, but we can’t elicit it perfectly. Reliability Engineering and System Safety, 85(1–3), 239–248.

    Article  Google Scholar 

  • Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263, 641–646.

    Article  Google Scholar 

  • Poole, D., & Raftery, A. E. (2000). Inference for deterministic simulation models: The Bayesian melding approach. Journal of the American Statistical Association, 95(452), 1244.

    Article  Google Scholar 

  • Qian, P. Z. G., & Wu, C. F. J. (2008). Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics, 50(2), 192–204.

    Article  Google Scholar 

  • R Development Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org/

    Google Scholar 

  • Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT. http://www.ncbi.nlm.nih.gov/pubmed/15112367

    Google Scholar 

  • Rossiter, S., Noble, J., & Bell, K. (2010). Social simulations: Improving interdisciplinary understanding of scientific positioning and validity. Journal of Artificial Societies and Social Simulation, 13(1), 10.

    Article  Google Scholar 

  • Roustant, O., Ginsbourger, D., & Deville, Y. (2012). DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodelling and optimisation. Journal of Statistical Software 51(1).

    Google Scholar 

  • Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity analysis in practice. Chichester: Wiley.

    Google Scholar 

  • Saltelli, A., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., & Tarantola, S. (2008). Global sensitivity analysis. The primer. Chichester: Wiley.

    Google Scholar 

  • Santner, T. J., Williams, B. J., & Notz, W. I. (2003). The design and analysis of computer experiments. New York: Springer.

    Book  Google Scholar 

  • Ševčíková, H., Raftery, A. E., & Waddell, P. A. (2007). Assessing uncertainty in urban simulations using Bayesian melding. Transportation Research Part B: Methodological, 41(6), 652–669.

    Article  Google Scholar 

  • Silverman, E., Bijak, J., & Noble, J. (2011). Feeding the beast: Can computational demographic models free us from the tyranny of data? In Advances in Artificial Life, ECAL 2011: Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems, Paris (pp. 747–757). MIT Press. http://eprints.ecs.soton.ac.uk/22839/

  • Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1–3), 271–280.

    Article  Google Scholar 

  • Squazzoni, F. (2012). Agent-based computational sociology (1st ed.). Hoboken: Wiley.

    Book  Google Scholar 

  • Urban, N. M., & Fricker, T. E. (2010). A comparison of Latin hypercube and grid ensemble designs for the multivariate emulation of an earth system model. Computers & Geosciences, 36(6), 746–755.

    Article  Google Scholar 

  • Vernon, I., Goldsteiny, & M., Bowerz, R. G. (2010). Galaxy formation: A Bayesian uncertainty analysis. Bayesian Analysis, 5(4), 619–670.

    Google Scholar 

  • Werker, C., & Brenner, T. (2004). Empirical calibration of simulation models. Technical report, Max Planck Institute of Economics. https://www.econstor.eu/handle/10419/88244/

    Google Scholar 

  • Xie, W., Nelson, B. L., Barton, R. R., Nelson, B. L., & Barton, R. R. (2014). A Bayesian framework for quantifying uncertainty in stochastic simulation. Operations Research, 62(6), 1439–1452.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Engineering and Physical Sciences Research Council (EPSRC) grant EP/H021698/1 “Care Life Cycle” and the support of the EPSRC Doctoral Training Centre grant (EP/G03690X/1). We are grateful to Jonathan Forster and two anonymous reviewers for insightful comments and suggestions. Any errors remain exclusively ours.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Hilton .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Appendices (ZIP 75031 kb).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hilton, J., Bijak, J. (2017). Design and Analysis of Demographic Simulations. In: Grow, A., Van Bavel, J. (eds) Agent-Based Modelling in Population Studies. The Springer Series on Demographic Methods and Population Analysis, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-32283-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32283-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32281-0

  • Online ISBN: 978-3-319-32283-4

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics