# Blending, Math, and Technology

Chapter

First Online:

## Abstract

The applications of neuroscientific research to education have been expanding over the last few decades. Among other things, the research supports the blending model of cognition, which asserts that concepts are formed through associations and amalgamations in the brain. The theory of blending and its various implications for math pedagogy are explored in this chapter, since these are especially relevant to teaching mathematics in the Global Village.

## Keywords

Image Schema Source Domain Number Sense Conceptual Metaphor Story Problem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

- Alexander, J. (2012). On the cognitive and semiotic structure of mathematics. In M. Bockarova, M. Danesi, & R. Núñez (Eds.),
*Semiotic and cognitive science essays on the nature of mathematics*(pp. 1–34). Munich: Lincom Europa.Google Scholar - Ardila, A., & Rosselli, M. (2002). Acalculia and dyscalculia.
*Neuropsychology Review,**12*, 179–231.CrossRefGoogle Scholar - Bockarova, M., Danesi, M., & Núñez, R. (Eds.). (2012).
*Semiotic and cognitive science essays on the nature of mathematics*. Munich: Lincom Europa.Google Scholar - Brian, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education.
*Science,**332*, 1049–1053.CrossRefGoogle Scholar - Butterworth, B. (1999).
*What counts: How every brain is hardwired for math*. Michigan: Free Press.Google Scholar - de Chardin, P. T. (1945) [2008].
*The phenomenon of man*. New York: Harper.Google Scholar - Danesi, M. (1987). Formal mother-tongue training and the learning of mathematics in elementary school: An observational note on the Brussels
*Foyer Project*.*Scientia Paedogogica Experimentalis,**24*, 313–320.Google Scholar - Danesi, M. (2003). Conceptual metaphor theory and the teaching of mathematics: Findings of a pilot project.
*Semiotica,**145*, 71–83.Google Scholar - Danesi, M. (2007). A conceptual metaphor framework for the teaching mathematics.
*Studies in Philosophy and Education,**26*, 225–236.CrossRefGoogle Scholar - Dehaene, S. (1997).
*The number sense: How the mind creates mathematics*. Oxford: Oxford University Press.Google Scholar - Dehaene, S. (2004). Arithmetic and the brain.
*Current Opinion in Neurobiology,**14*, 218–224.CrossRefGoogle Scholar - Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing.
*Cognitive Neuropsychology,**20*, 487–506.CrossRefGoogle Scholar - Devlin, K. (2000).
*The math gene: How mathematical thinking evolved and Why numbers are like gossip*. New York: Basic.Google Scholar - Devlin, K. (2005).
*The math instinct: Why you’re a mathematical genius (along with Lobsters, Birds, Cats and Dogs)*. New York: Thunder’s Mouth Press.Google Scholar - Eco, U. (1979).
*The role of the reader. Explorations in the semiotics of texts*. Bloomington: Indiana University Press.Google Scholar - Fauconnier, G., & Turner, M. (2002).
*The way we think: Conceptual blending and the mind’s hidden complexities*. New York: Basic.Google Scholar - Gerofsky, S. (2015). Approaches to embodied learning in mathematics. In: L. D. English, & D. Kirshner (Eds.),
*Handbook of inernational research in mathematics education*. New York: Routledge.Google Scholar - Guhe, et al. (2011). A computational account of conceptual blending in basic mathematics.
*Cognitive Systems Research,**12*, 249–265.CrossRefGoogle Scholar - Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. K. Lester (Ed.),
*Second handbook of research on mathematics teaching and learning*(pp. 805–842). Charlotte, NC: Information Age Publishing.Google Scholar - Harris, Z. (1968).
*Mathematical structures of language*. New York: John Wiley.Google Scholar - Hockett, C. F. (1967).
*Language, mathematics and linguistics*. The Hague: Mouton.Google Scholar - Hyde, D. C. (2011). Two systems of non-symbolic numerical cognition.
*Frontiers in Human Neuroscience,*. doi: 10.3389/fnhum.2011.00150.Google Scholar - Isaacs, E. B., Edmonds, C. J., Lucas, A., & Gadian, D. G. (2001). Calculation difficulties in children of very low birthweight: A neural correlate.
*Brain,**124*, 1701–1707.CrossRefGoogle Scholar - Izard, V., Pica, P., Spelke, E. S., & Dehaene, S. (2011). Flexible intuitions of euclidean geometry in an Amazonian indigene group.
*PNAS,**108*, 9782–9787.CrossRefGoogle Scholar - Kant, I. (2011) [1781].
*Critique of pure reason*(J. M. D. Meiklejohn, Trans.). CreateSpace Platform.Google Scholar - Kiryushchenko, V. (2012). The visual and the virtual in theory, life and scientific practice: The case of Peirce’s quincuncial map projection. In M. Bockarova, M. Danesi, & R. Núñez (Eds.),
*Semiotic and cognitive science essays on the nature of mathematics*(pp. 61–70). Munich: Lincom Europa.Google Scholar - Lakoff, G. (2012). The contemporary theory of metaphor. In: M. Danesi & S. Maida-Nicol (Eds.),
*Foundational texts in linguistic anthropology*(pp. 128–171). Toronto: Canadian Scholars’ Press.Google Scholar - Lakoff, G., & Núñez, R. (2000).
*Where mathematics comes from: How the embodied mind brings mathematics into being*. New York: Basic Books.Google Scholar - Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development.
*Mathematical Thinking and Learning,**5*, 157.CrossRefGoogle Scholar - McLuhan, M. (1962).
*The gutenberg galaxy: The making of typographic man*. Toronto: University of Toronto Press.Google Scholar - McLuhan, M. (2004). In S. McLuhan & D. Staines (Eds.),
*Understanding me: Lectures and interviews*. Toronto: McLelland and Stewart.Google Scholar - McLuhan, M., Gordon, W. Terrence, & Lamberti, E. (2010).
*The Gutenberg Galaxy. The making of typographic man*. Toronto: University of Toronto Press.Google Scholar - Núñez, R., Edwards, L. D., & Matos, F. J. (1999). Embodied cognition as grounding for situatedness and context in mathematics education.
*Educational Studies in Mathematics,**39*, 45–65.CrossRefGoogle Scholar - Peirce, C. S. (1931–1958). In C. Hartshorne & P. Weiss (Eds.),
*Collected papers of Charles Sanders Peirce*(Vols. 1–8). Cambridge, Mass: Harvard University Press.Google Scholar - Presmeg, N. C. (1997). Reasoning with metaphors and metonymies in mathematics learning. In L. D. English (Ed.),
*Mathematical reasoning: Analogies, metaphors, and images*(pp. 267–280). Mahwah: Lawrence Erlbaum.Google Scholar - Postman, N. (1992).
*Technopoly: The surrender of culture to technology*. New York: Alfred A. Knopf.Google Scholar - Presmeg, N. C. (2005). Metaphor and metonymy in processes of semiosis in mathematics education. In J. Lenhard & F. Seeger (Eds.),
*Activity and sign*(pp. 105–116). New York: Springer.CrossRefGoogle Scholar - Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective.
*Research in Mathematics Education,**12*, 1–19.CrossRefGoogle Scholar - Turner, M. (2005). Mathematics and narrative. http://thalesandfriends.org/en/papers/pdf/turner_paper.pdf.
- Visser, B. A., Ashton, M. C., & Vernon, P. A. (2006).
*g*and the measurement of multiple intelligences: A response to Gardner.*Intelligence,**34*, 507–510.CrossRefGoogle Scholar - Whiteley, W. (2013). Mathematical modeling as conceptual blending: Exploring an example within mathematics education. In M. Bockarova, M. Danesi & R. Núñez (Eds.),
*Semiotic and cognitive science essays on the nature of mathematics*(pp. 256–279). Munich: Lincom Europa.Google Scholar

## Copyright information

© Springer International Publishing Switzerland 2016