Skip to main content

Blending, Math, and Technology

  • Chapter
  • First Online:
Learning and Teaching Mathematics in The Global Village

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 6))

  • 1199 Accesses

Abstract

The applications of neuroscientific research to education have been expanding over the last few decades. Among other things, the research supports the blending model of cognition, which asserts that concepts are formed through associations and amalgamations in the brain. The theory of blending and its various implications for math pedagogy are explored in this chapter, since these are especially relevant to teaching mathematics in the Global Village.

Mathematics is the most beautiful and most powerful creation of the human spirit.

Stefan Banach (1892–1945)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, J. (2012). On the cognitive and semiotic structure of mathematics. In M. Bockarova, M. Danesi, & R. Núñez (Eds.), Semiotic and cognitive science essays on the nature of mathematics (pp. 1–34). Munich: Lincom Europa.

    Google Scholar 

  • Ardila, A., & Rosselli, M. (2002). Acalculia and dyscalculia. Neuropsychology Review, 12, 179–231.

    Article  Google Scholar 

  • Bockarova, M., Danesi, M., & Núñez, R. (Eds.). (2012). Semiotic and cognitive science essays on the nature of mathematics. Munich: Lincom Europa.

    Google Scholar 

  • Brian, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053.

    Article  Google Scholar 

  • Butterworth, B. (1999). What counts: How every brain is hardwired for math. Michigan: Free Press.

    Google Scholar 

  • de Chardin, P. T. (1945) [2008]. The phenomenon of man. New York: Harper.

    Google Scholar 

  • Danesi, M. (1987). Formal mother-tongue training and the learning of mathematics in elementary school: An observational note on the Brussels Foyer Project. Scientia Paedogogica Experimentalis, 24, 313–320.

    Google Scholar 

  • Danesi, M. (2003). Conceptual metaphor theory and the teaching of mathematics: Findings of a pilot project. Semiotica, 145, 71–83.

    Google Scholar 

  • Danesi, M. (2007). A conceptual metaphor framework for the teaching mathematics. Studies in Philosophy and Education, 26, 225–236.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.

    Google Scholar 

  • Dehaene, S. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.

    Article  Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.

    Article  Google Scholar 

  • Devlin, K. (2000). The math gene: How mathematical thinking evolved and Why numbers are like gossip. New York: Basic.

    Google Scholar 

  • Devlin, K. (2005). The math instinct: Why you’re a mathematical genius (along with Lobsters, Birds, Cats and Dogs). New York: Thunder’s Mouth Press.

    Google Scholar 

  • Eco, U. (1979). The role of the reader. Explorations in the semiotics of texts. Bloomington: Indiana University Press.

    Google Scholar 

  • Fauconnier, G., & Turner, M. (2002). The way we think: Conceptual blending and the mind’s hidden complexities. New York: Basic.

    Google Scholar 

  • Gerofsky, S. (2015). Approaches to embodied learning in mathematics. In: L. D. English, & D. Kirshner (Eds.), Handbook of inernational research in mathematics education. New York: Routledge.

    Google Scholar 

  • Guhe, et al. (2011). A computational account of conceptual blending in basic mathematics. Cognitive Systems Research, 12, 249–265.

    Article  Google Scholar 

  • Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805–842). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Harris, Z. (1968). Mathematical structures of language. New York: John Wiley.

    Google Scholar 

  • Hockett, C. F. (1967). Language, mathematics and linguistics. The Hague: Mouton.

    Google Scholar 

  • Hyde, D. C. (2011). Two systems of non-symbolic numerical cognition. Frontiers in Human Neuroscience,. doi:10.3389/fnhum.2011.00150.

    Google Scholar 

  • Isaacs, E. B., Edmonds, C. J., Lucas, A., & Gadian, D. G. (2001). Calculation difficulties in children of very low birthweight: A neural correlate. Brain, 124, 1701–1707.

    Article  Google Scholar 

  • Izard, V., Pica, P., Spelke, E. S., & Dehaene, S. (2011). Flexible intuitions of euclidean geometry in an Amazonian indigene group. PNAS, 108, 9782–9787.

    Article  Google Scholar 

  • Kant, I. (2011) [1781]. Critique of pure reason (J. M. D. Meiklejohn, Trans.). CreateSpace Platform.

    Google Scholar 

  • Kiryushchenko, V. (2012). The visual and the virtual in theory, life and scientific practice: The case of Peirce’s quincuncial map projection. In M. Bockarova, M. Danesi, & R. Núñez (Eds.), Semiotic and cognitive science essays on the nature of mathematics (pp. 61–70). Munich: Lincom Europa.

    Google Scholar 

  • Lakoff, G. (2012). The contemporary theory of metaphor. In: M. Danesi & S. Maida-Nicol (Eds.), Foundational texts in linguistic anthropology (pp. 128–171). Toronto: Canadian Scholars’ Press.

    Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical Thinking and Learning, 5, 157.

    Article  Google Scholar 

  • McLuhan, M. (1962). The gutenberg galaxy: The making of typographic man. Toronto: University of Toronto Press.

    Google Scholar 

  • McLuhan, M. (2004). In S. McLuhan & D. Staines (Eds.), Understanding me: Lectures and interviews. Toronto: McLelland and Stewart.

    Google Scholar 

  • McLuhan, M., Gordon, W. Terrence, & Lamberti, E. (2010). The Gutenberg Galaxy. The making of typographic man. Toronto: University of Toronto Press.

    Google Scholar 

  • Núñez, R., Edwards, L. D., & Matos, F. J. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, 39, 45–65.

    Article  Google Scholar 

  • Peirce, C. S. (1931–1958). In C. Hartshorne & P. Weiss (Eds.), Collected papers of Charles Sanders Peirce (Vols. 1–8). Cambridge, Mass: Harvard University Press.

    Google Scholar 

  • Presmeg, N. C. (1997). Reasoning with metaphors and metonymies in mathematics learning. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 267–280). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Postman, N. (1992). Technopoly: The surrender of culture to technology. New York: Alfred A. Knopf.

    Google Scholar 

  • Presmeg, N. C. (2005). Metaphor and metonymy in processes of semiosis in mathematics education. In J. Lenhard & F. Seeger (Eds.), Activity and sign (pp. 105–116). New York: Springer.

    Chapter  Google Scholar 

  • Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education, 12, 1–19.

    Article  Google Scholar 

  • Turner, M. (2005). Mathematics and narrative. http://thalesandfriends.org/en/papers/pdf/turner_paper.pdf.

  • Visser, B. A., Ashton, M. C., & Vernon, P. A. (2006). g and the measurement of multiple intelligences: A response to Gardner. Intelligence, 34, 507–510.

    Article  Google Scholar 

  • Whiteley, W. (2013). Mathematical modeling as conceptual blending: Exploring an example within mathematics education. In M. Bockarova, M. Danesi & R. Núñez (Eds.), Semiotic and cognitive science essays on the nature of mathematics (pp. 256–279). Munich: Lincom Europa.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Danesi .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Danesi, M. (2016). Blending, Math, and Technology. In: Learning and Teaching Mathematics in The Global Village. Mathematics Education in the Digital Era, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-32280-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32280-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32278-0

  • Online ISBN: 978-3-319-32280-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics