Advertisement

Pop Culture in Math Pedagogy

  • Marcel DanesiEmail author
Chapter
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 6)

Abstract

American pop culture is everywhere, reaching the entire globe. While many aspects of this culture might seem to be superficial, there are many others that, on the other hand, have significant value. This chapter will look a several domains of pop culture where math figures prominently, including comic books, movies, television, and video games. The pedagogical aspects of the integration of “pop math” with “school math” are discussed throughout.

Keywords

Video Game Mathematical Thinking Comic Strip Previous Chapter Teaching Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, T. L., & Smith, S. A. (Eds.). (2008). Electronic tribes: The virtual worlds of geeks, gamers, shamans, and scammers. Austin: University of Texas Press.Google Scholar
  2. Angotti, R., & Bayo, I. (2012). Making kinections: Using video game technology to teach math. Prato CIRN Community Informatics Conference: 1–6.Google Scholar
  3. Barthes, R. (1957). Mythologies. Paris: Seuil.Google Scholar
  4. Coupland, D. (2010). Marshall McLuhan: You Know Nothing of My Work! New York: Atlas.Google Scholar
  5. Danesi, M. (2007). A conceptual metaphor framework for the teaching mathematics. Studies in Philosophy and Education, 26, 225–236.CrossRefGoogle Scholar
  6. Devlin, K. (2011). Mathematics education for a new era: Video games as a medium for learning. Boca Raton: CRC.CrossRefGoogle Scholar
  7. Devlin, K. (2013). The symbol barrier to mathematics learning. In M. Bockarova, M. Danesi, & R. Núñez (Eds.), Semiotic and cognitive science essays on the nature of mathematics (pp. 54–60). Munich: Lincom Europa.Google Scholar
  8. Doxiadis, A. K., Papadimitriou, C. H., Papadatos, A., & Di Donna, A. (2009). Logicomix. New York: Bloomsbury.Google Scholar
  9. Fine, G. A. (1983). Shared fantasy: Role-playing games as social worlds. Chicago: University of Chicago Press.Google Scholar
  10. Gessen, M. (2009). Perfect rigor: A genius and the mathematical breakthrough of the century. Boston: Houghton Mifflin Harcourt.Google Scholar
  11. Gonick, L. (2011). The cartoon guide to calculus. New York: Avon.Google Scholar
  12. Gramsci, A. (1947). Lettere dal carcere. Torino: Einaudi.Google Scholar
  13. Greenberg, D. (2010). Comic-strip math: Problem solving: 80 reproducible cartoons with dozens and dozens of story problems that motivate students and build essential math skills. New York: Scholastic Teaching Resources.Google Scholar
  14. Herman, E. S., & Chomsky, N. (1988). Manufacturing consent: The political economy of the mass media. New York: Pantheon.Google Scholar
  15. Karaali, G. (2015). Can zombies do math? In M. Bockarova, M. Danesi, D. Martinovic, & R. Núñez (Eds.), Mind in mathematics (pp. 126–139). Munich: Lincom Europa.Google Scholar
  16. Kojima, H., & Togami, S. (2009). Manga guide to calculus. San Francisco: No Starch Press.Google Scholar
  17. Krewani, A. (2014). McLuhan’s Global Village Today. New York: Routledge.Google Scholar
  18. Langer, S. K. (1948). Philosophy in a new key. New York: Mentor Books.Google Scholar
  19. Levinson, P. (2001). Digital McLuhan: A guide to the information millennium. New York: Routledge.Google Scholar
  20. Lippmann, W. (1922). Public opinion. New York: Macmillan.Google Scholar
  21. Malykina, E. (2014). Fact of fiction?: Video games are the future of education. Scientific American. http://www.scientificamerican.com/article/fact-or-fiction-video-games-are-the-future-of-education/.
  22. McLuhan, M. (1951). The mechanical bride: Folklore of industrial man. New York: Vanguard.Google Scholar
  23. McLuhan, M. (1964). Understanding media: The extensions of man. Cambridge, MA: MIT Press.Google Scholar
  24. McLuhan, E., & Zingrone, F. (eds.) (1997). Essential McLuhan. New York: Routledge.Google Scholar
  25. Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics and school mathematics. Cambridge: Cambridge University Press.Google Scholar
  26. O’Shea, D. (2007). The Poincaré conjecture. New York: Walker.Google Scholar
  27. Polster, B., & Ross, M. (2012). Math goes to the movies. Baltimore: Johns Hopkins University Press.Google Scholar
  28. Singh, S. (2013). The simpsons and their mathematical secrets. New York: Bloomsbury.Google Scholar
  29. Takahashi, S., & Inoue, I. (2009). Statistics. San Francisco: No Starch Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Victoria CollegeUniversity of TorontoTorontoCanada

Personalised recommendations