# Technology, Society, and Education

Chapter

First Online:

## Abstract

The relation between social and cognitive evolution and changes in mass communications technologies was explored profoundly by Marcshall McLuhan. Among the various ideas that his exploration uncovered was the suggestion that technology extends human facultes. The main revolutions in history, in fact, are associated with media revolutions. This chapter examines this basic framework, with discussions on the use of print and electronic media in math education, as well as the connection between math and computer science in the classroom.

## Keywords

Print Material Printing Press Math Education Decimal System Paper Book
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

- Anderson, M. (2013). How qualification and quantification meet, or don’t, in ethnograph. In M. Bockarova, M. Danesi, & R. Núñez (Eds.),
*Semiotic and cognitive science essays on the nature of mathematics*(pp. 296–329). Munich: Lincom Europa.Google Scholar - Appel, K., & Haken, W. (1986). The four color proof suffices.
*The Mathematical Intelligencer,**8*, 10–20.CrossRefGoogle Scholar - Arnheim, R. (1969).
*Visual thinking*. Berkeley: University of California Press.Google Scholar - Averbach, B., & Chein, O. (1980).
*Problem solving through recreational mathematics*. New York: Dover.Google Scholar - Ball, W. W. R. (1972).
*Mathematical recreations and essays*(12^{th}ed.). In H. S. M. Coxeter (Ed.), Toronto: University of Toronto Press.Google Scholar - Baudrillard, J. (1983).
*Simulations*. New York: Semiotext(e).Google Scholar - Benedikt, M. (1991).
*Cyberspace: First steps*. Cambridge, MA: MIT Press.Google Scholar - Burger, D. (1995) [1965].
*Sphereland: A fantasy about curved spaces and an expanded universe*(C. J. Rheinbolt, Trans.). New York: Harper Collins.Google Scholar - Burns, B. A., & Hamm, E. M. (2011). A comparison of concrete and virtual manipulative use in third- and fourth-grade mathematics.
*School Science and Mathematics,**111*, 256–261.CrossRefGoogle Scholar - Carroll, L. (1886).
*A tangled tale*. London: Macmillan.Google Scholar - Carroll, L. (2000).
*The annotated Alice. The definitive edition. Alice’s adventures in wonderland & Through the looking glass*. Introduction and notes by Martin Gardner. New York: W. W. Norton Company.Google Scholar - Carroll, L. (2006).
*The annotated Hunting of the snark. The definitive edition*. Edited with notes by Martin Gardner. New York: W. W. Norton and Company.Google Scholar - Danesi, M. (2002).
*The puzzle instinct: The meaning of puzzles in human life*. Bloomington: Indiana University Press.Google Scholar - Danesi, M. (2013).
*La comunicazione al tempo di Internet*. Bari: Progedit.Google Scholar - Davis, B. (2015). Where mathematics curriculum comes from. In M. Bockarova, M. Danesi, D. Martinovic, & R. Núñez (Eds.),
*Mind in mathematics*(pp. 3–18). Munich: Lincom Europa.Google Scholar - Devlin, K. (2010). The hidden math behind
*Alice in Wonderland.*Mathematical association of America. http://www.maa.org/devlin/devlin_03_10.html. - Devlin, K. (2011).
*The man of numbers: Fibonacci’s arithmetic revolution*. New York: Walker and Company.Google Scholar - Dewdney, A. K. (2001) [1984]).
*The planiverse: Computer contact with a two-dimensional world*. New York: Copernicus Books.Google Scholar - Doxiadis, A. (1992).
*Uncle Petros and Goldbach’s conjecture*. London: Faber and Faber.Google Scholar - Dudeney, H. E. (1919).
*Modern puzzles and how to solve them*. London: Nelson.Google Scholar - Dudeney, H. E. (1958).
*The Canterbury puzzles and other curious problems*. New York: Dover.Google Scholar - Dudeney, H. E. (1967).
*538 puzzles and curious problems*. New York: Scribner.Google Scholar - Flapan, E. (2013). How to be a good teacher is an undecidable problem. In M. Pitici (Ed.),
*The best writing in mathematics 2012*(pp. 141–148). Princeton: Princeton University Press.Google Scholar - Fortnow, L. (2013).
*The golden ticket: P, NP, and the search for the impossible*. Princeton: Princeton University Press.CrossRefGoogle Scholar - Gardner, M. (1956).
*Mathematics, magic, and mystery*. New York: Dover.Google Scholar - Gardner, M. (1979).
*Aha! insight!*. New York: Scientific American.Google Scholar - Gardner, M. (1982).
*Gotcha! Paradoxes to puzzle and delight*. San Francisco: Freeman.Google Scholar - Gardner, M. (1987).
*Riddle of the Sphinx and other mathematical Tales*. Washington, D.C.: Mathematical Association of America.Google Scholar - Gardner, M. (1997).
*The last recreations: Hydras, eggs, and other mathematical mystifications*. New York: Copernicus.CrossRefGoogle Scholar - Gardner, M. (2001).
*The colossal book of mathematics*. New York: Norton.Google Scholar - Gibson, T., & Murray, S. J. (2013). Global village. In M. Danesi (Ed.),
*Encyclopedia of media and communication*. Toronto: University of Toronto Press.Google Scholar - Haken, W., & Appel, K. (1977). The solution of the four-color-map problem.
*Scientific American,**237*, 108–121.Google Scholar - Heath, R. V. (1953).
*Mathemagic: Magic, puzzles, and games with numbers*. New York: Dover.Google Scholar - Hersh, R. (1998).
*What is mathematics, really?*. Oxford: Oxford University Press.Google Scholar - Hofstadter, D. (1979).
*Gödel, Escher, Bach: An eternal golden braid*. New York: Basic.Google Scholar - Hofstadter, D., & Sander, E. (2013).
*Surfaces and essences: Analogy as the fuel and fire of thinking*. New York: Basic.Google Scholar - Juster, N. (1963).
*The dot and the line: A romance in lower mathematics, by Norton*. New York: Random House.Google Scholar - Karaali, G. (2015). Can zombies do math? In M. Bockarova, M. Danesi, D. Martinovic, & R. Núñez (Eds.),
*Mind in mathematics*(pp. 126–139). Munich: Lincom Europa.Google Scholar - Kasner, E., & Newman, J. (1940).
*Mathematics and the imagination*. New York: Simon and Schuster.Google Scholar - Kosslyn, S. M. (1983).
*Ghosts in the mind’s machine: Creating and using images in the brain*. New York: W. W. Norton.Google Scholar - Lakoff, G., & Johnson, M. (1999).
*Philosophy in flesh: The embodied mind and its challenge to western thought*. New York: Basic.Google Scholar - Lakoff, G., & Núñez, R. (2000).
*Where mathematics comes from: How the embodied mind brings mathematics into being*. New York: Basic Books.Google Scholar - Lewis, W. (1948).
*America and cosmic man*. New York: Doubleday.Google Scholar - Logan, R. K. (1986).
*The alphabet effect*. New York: William Morrow.Google Scholar - Loyd, S. (1914).
*Cyclopedia of tricks and puzzles*. New York: Dover.Google Scholar - Loyd, S. (1952).
*The eighth book of tan*. New York: Dover.Google Scholar - Loyd, S. (1959).
*Mathematical puzzles of Sam Loyd, 2 volumes, compiled by Martin Gardner*(pp. 1959–1960). New York: Dover.Google Scholar - Lucas, F., & Edouard, A. (1882–1894).
*Récreations mathématiques*(Vols. 4). Paris: Gauthier-Villars.Google Scholar - MacWhinney, B. (2000). Connectionism and Language Learning. In M. Barlow & S. Kemmer (Eds.),
*Usage models of language*(pp. 121–150). Stanford: Center for the Study of Language and Information.Google Scholar - Mann, T. (2010). From Sylvia Plath’s
*The Bell Jar*to the bad sex award: A partial account of the uses of mathematics in fiction.*BSHM Bulletin,**25*, 58–66.CrossRefGoogle Scholar - Martinet, A. (1955).
*Économie des changements phonétiques*. Paris: Maisonneuve and Larose.Google Scholar - Martinovic, D. (2015). Digital technologies and mathematical minds. In M. Bockarova, M. Danesi, D. Martinovic, & R. Núñez (Eds.),
*Mind in mathematics*(pp. 105–114). Munich: Lincom Europa.Google Scholar - McLuhan, M. (1962).
*The Gutenberg galaxy: The making of typographic man*. Toronto: University of Toronto Press.Google Scholar - McLuhan, M. (1964).
*Understanding media: The extensions of man*. Cambridge, MA: MIT Press.Google Scholar - Mello e Souza, Júlio César de (1949).
*The man who counted*.Google Scholar - Moscovich, I. (2001).
*Puzzles, paradoxes, illusions & games*. New York: Workman.Google Scholar - Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives?
*Teaching Children Mathematics,**8*, 372–377.Google Scholar - Mumford, D., & Garfunkel, S. (2013). Bottom line on mathematics education. In M. Pitici (Ed.),
*The best writing in mathematics 2012*(pp. 173–175). Princeton: Princeton University Press.Google Scholar - Nasar, S. (2011).
*A beautiful mind*. New York: Simon and schuster.Google Scholar - Nuessel, F. (2013). The representation of mathematics in the media. In M. Bockarova, M. Danesi, & R. Núñez (Eds.),
*Semiotic and cognitive science essays on the nature of mathematics*(pp. 154–198). Munich: Lincom Europa.Google Scholar - Obler, L. K., & Gjerlow, K. (1999).
*Language and the brain*. Cambridge: Cambridge University Press.Google Scholar - Olivastro, D. (1993).
*Ancient puzzles: Classic brainteasers and other timeless mathematical games of the last 10 centuries*. New York: Bantam.Google Scholar - Ong, W. J. (1982).
*Orality and literacy*. New York: Methuen.CrossRefGoogle Scholar - Posamentier, A. S., & Lehmann, I. (2007).
*The (fabulous) Fibonacci numbers*. New York: Prometheus.Google Scholar - Rucker, R. (2002).
*Spaceland: A novel of the fourth dimension*. New York: Tor.Google Scholar - Scott, M. L. (2009).
*Programming language pragmatics*. Oxford: Elsevier.Google Scholar - Sklar, J. K., & Sklar, E. S. (Eds.). (2012).
*Mathematics in popular culture: Essays on appearances in film, fiction, games, television and other media*. Jefferson: McFarland.Google Scholar - Smullyan, R. (1978).
*What is the name of this book? The Riddle of Dracula and other logical puzzles*. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar - Smullyan, R. (1997).
*The Riddle of Scheherazade and other amazing puzzles, ancient and modern*. New York: Knopf.Google Scholar - Stewart, I. (2001).
*Flatterland: Like Flatland, only more so*. New York: Basic Books.Google Scholar - van Delft, P., & Botermans, J. (1995).
*Creative puzzles of the world*. Berkeley: Key Curriculum Press.Google Scholar - Wells, D. (1992).
*The Penguin book of curious and interesting puzzles*. Harmondsworth: Penguin.Google Scholar - Yuki, H. (2007).
*Math girls.*SoftBank Creative.Google Scholar

## Copyright information

© Springer International Publishing Switzerland 2016