Technology, Society, and Education

  • Marcel DanesiEmail author
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 6)


The relation between social and cognitive evolution and changes in mass communications technologies was explored profoundly by Marcshall McLuhan. Among the various ideas that his exploration uncovered was the suggestion that technology extends human facultes. The main revolutions in history, in fact, are associated with media revolutions. This chapter examines this basic framework, with discussions on the use of print and electronic media in math education, as well as the connection between math and computer science in the classroom.


Print Material Printing Press Math Education Decimal System Paper Book 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson, M. (2013). How qualification and quantification meet, or don’t, in ethnograph. In M. Bockarova, M. Danesi, & R. Núñez (Eds.), Semiotic and cognitive science essays on the nature of mathematics (pp. 296–329). Munich: Lincom Europa.Google Scholar
  2. Appel, K., & Haken, W. (1986). The four color proof suffices. The Mathematical Intelligencer, 8, 10–20.CrossRefGoogle Scholar
  3. Arnheim, R. (1969). Visual thinking. Berkeley: University of California Press.Google Scholar
  4. Averbach, B., & Chein, O. (1980). Problem solving through recreational mathematics. New York: Dover.Google Scholar
  5. Ball, W. W. R. (1972). Mathematical recreations and essays (12th ed.). In H. S. M. Coxeter (Ed.), Toronto: University of Toronto Press.Google Scholar
  6. Baudrillard, J. (1983). Simulations. New York: Semiotext(e).Google Scholar
  7. Benedikt, M. (1991). Cyberspace: First steps. Cambridge, MA: MIT Press.Google Scholar
  8. Burger, D. (1995) [1965]. Sphereland: A fantasy about curved spaces and an expanded universe (C. J. Rheinbolt, Trans.). New York: Harper Collins.Google Scholar
  9. Burns, B. A., & Hamm, E. M. (2011). A comparison of concrete and virtual manipulative use in third- and fourth-grade mathematics. School Science and Mathematics, 111, 256–261.CrossRefGoogle Scholar
  10. Carroll, L. (1886). A tangled tale. London: Macmillan.Google Scholar
  11. Carroll, L. (2000). The annotated Alice. The definitive edition. Alice’s adventures in wonderland & Through the looking glass. Introduction and notes by Martin Gardner. New York: W. W. Norton Company.Google Scholar
  12. Carroll, L. (2006). The annotated Hunting of the snark. The definitive edition. Edited with notes by Martin Gardner. New York: W. W. Norton and Company.Google Scholar
  13. Danesi, M. (2002). The puzzle instinct: The meaning of puzzles in human life. Bloomington: Indiana University Press.Google Scholar
  14. Danesi, M. (2013). La comunicazione al tempo di Internet. Bari: Progedit.Google Scholar
  15. Davis, B. (2015). Where mathematics curriculum comes from. In M. Bockarova, M. Danesi, D. Martinovic, & R. Núñez (Eds.), Mind in mathematics (pp. 3–18). Munich: Lincom Europa.Google Scholar
  16. Devlin, K. (2010). The hidden math behind Alice in Wonderland. Mathematical association of America.
  17. Devlin, K. (2011). The man of numbers: Fibonacci’s arithmetic revolution. New York: Walker and Company.Google Scholar
  18. Dewdney, A. K. (2001) [1984]). The planiverse: Computer contact with a two-dimensional world. New York: Copernicus Books.Google Scholar
  19. Doxiadis, A. (1992). Uncle Petros and Goldbach’s conjecture. London: Faber and Faber.Google Scholar
  20. Dudeney, H. E. (1919). Modern puzzles and how to solve them. London: Nelson.Google Scholar
  21. Dudeney, H. E. (1958). The Canterbury puzzles and other curious problems. New York: Dover.Google Scholar
  22. Dudeney, H. E. (1967). 538 puzzles and curious problems. New York: Scribner.Google Scholar
  23. Flapan, E. (2013). How to be a good teacher is an undecidable problem. In M. Pitici (Ed.), The best writing in mathematics 2012 (pp. 141–148). Princeton: Princeton University Press.Google Scholar
  24. Fortnow, L. (2013). The golden ticket: P, NP, and the search for the impossible. Princeton: Princeton University Press.CrossRefGoogle Scholar
  25. Gardner, M. (1956). Mathematics, magic, and mystery. New York: Dover.Google Scholar
  26. Gardner, M. (1979). Aha! insight!. New York: Scientific American.Google Scholar
  27. Gardner, M. (1982). Gotcha! Paradoxes to puzzle and delight. San Francisco: Freeman.Google Scholar
  28. Gardner, M. (1987). Riddle of the Sphinx and other mathematical Tales. Washington, D.C.: Mathematical Association of America.Google Scholar
  29. Gardner, M. (1997). The last recreations: Hydras, eggs, and other mathematical mystifications. New York: Copernicus.CrossRefGoogle Scholar
  30. Gardner, M. (2001). The colossal book of mathematics. New York: Norton.Google Scholar
  31. Gibson, T., & Murray, S. J. (2013). Global village. In M. Danesi (Ed.), Encyclopedia of media and communication. Toronto: University of Toronto Press.Google Scholar
  32. Haken, W., & Appel, K. (1977). The solution of the four-color-map problem. Scientific American, 237, 108–121.Google Scholar
  33. Heath, R. V. (1953). Mathemagic: Magic, puzzles, and games with numbers. New York: Dover.Google Scholar
  34. Hersh, R. (1998). What is mathematics, really?. Oxford: Oxford University Press.Google Scholar
  35. Hofstadter, D. (1979). Gödel, Escher, Bach: An eternal golden braid. New York: Basic.Google Scholar
  36. Hofstadter, D., & Sander, E. (2013). Surfaces and essences: Analogy as the fuel and fire of thinking. New York: Basic.Google Scholar
  37. Juster, N. (1963). The dot and the line: A romance in lower mathematics, by Norton. New York: Random House.Google Scholar
  38. Karaali, G. (2015). Can zombies do math? In M. Bockarova, M. Danesi, D. Martinovic, & R. Núñez (Eds.), Mind in mathematics (pp. 126–139). Munich: Lincom Europa.Google Scholar
  39. Kasner, E., & Newman, J. (1940). Mathematics and the imagination. New York: Simon and Schuster.Google Scholar
  40. Kosslyn, S. M. (1983). Ghosts in the mind’s machine: Creating and using images in the brain. New York: W. W. Norton.Google Scholar
  41. Lakoff, G., & Johnson, M. (1999). Philosophy in flesh: The embodied mind and its challenge to western thought. New York: Basic.Google Scholar
  42. Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.Google Scholar
  43. Lewis, W. (1948). America and cosmic man. New York: Doubleday.Google Scholar
  44. Logan, R. K. (1986). The alphabet effect. New York: William Morrow.Google Scholar
  45. Loyd, S. (1914). Cyclopedia of tricks and puzzles. New York: Dover.Google Scholar
  46. Loyd, S. (1952). The eighth book of tan. New York: Dover.Google Scholar
  47. Loyd, S. (1959). Mathematical puzzles of Sam Loyd, 2 volumes, compiled by Martin Gardner (pp. 1959–1960). New York: Dover.Google Scholar
  48. Lucas, F., & Edouard, A. (1882–1894). Récreations mathématiques (Vols. 4). Paris: Gauthier-Villars.Google Scholar
  49. MacWhinney, B. (2000). Connectionism and Language Learning. In M. Barlow & S. Kemmer (Eds.), Usage models of language (pp. 121–150). Stanford: Center for the Study of Language and Information.Google Scholar
  50. Mann, T. (2010). From Sylvia Plath’s The Bell Jar to the bad sex award: A partial account of the uses of mathematics in fiction. BSHM Bulletin, 25, 58–66.CrossRefGoogle Scholar
  51. Martinet, A. (1955). Économie des changements phonétiques. Paris: Maisonneuve and Larose.Google Scholar
  52. Martinovic, D. (2015). Digital technologies and mathematical minds. In M. Bockarova, M. Danesi, D. Martinovic, & R. Núñez (Eds.), Mind in mathematics (pp. 105–114). Munich: Lincom Europa.Google Scholar
  53. McLuhan, M. (1962). The Gutenberg galaxy: The making of typographic man. Toronto: University of Toronto Press.Google Scholar
  54. McLuhan, M. (1964). Understanding media: The extensions of man. Cambridge, MA: MIT Press.Google Scholar
  55. Mello e Souza, Júlio César de (1949). The man who counted.Google Scholar
  56. Moscovich, I. (2001). Puzzles, paradoxes, illusions & games. New York: Workman.Google Scholar
  57. Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8, 372–377.Google Scholar
  58. Mumford, D., & Garfunkel, S. (2013). Bottom line on mathematics education. In M. Pitici (Ed.), The best writing in mathematics 2012 (pp. 173–175). Princeton: Princeton University Press.Google Scholar
  59. Nasar, S. (2011). A beautiful mind. New York: Simon and schuster.Google Scholar
  60. Nuessel, F. (2013). The representation of mathematics in the media. In M. Bockarova, M. Danesi, & R. Núñez (Eds.), Semiotic and cognitive science essays on the nature of mathematics (pp. 154–198). Munich: Lincom Europa.Google Scholar
  61. Obler, L. K., & Gjerlow, K. (1999). Language and the brain. Cambridge: Cambridge University Press.Google Scholar
  62. Olivastro, D. (1993). Ancient puzzles: Classic brainteasers and other timeless mathematical games of the last 10 centuries. New York: Bantam.Google Scholar
  63. Ong, W. J. (1982). Orality and literacy. New York: Methuen.CrossRefGoogle Scholar
  64. Posamentier, A. S., & Lehmann, I. (2007). The (fabulous) Fibonacci numbers. New York: Prometheus.Google Scholar
  65. Rucker, R. (2002). Spaceland: A novel of the fourth dimension. New York: Tor.Google Scholar
  66. Scott, M. L. (2009). Programming language pragmatics. Oxford: Elsevier.Google Scholar
  67. Sklar, J. K., & Sklar, E. S. (Eds.). (2012). Mathematics in popular culture: Essays on appearances in film, fiction, games, television and other media. Jefferson: McFarland.Google Scholar
  68. Smullyan, R. (1978). What is the name of this book? The Riddle of Dracula and other logical puzzles. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  69. Smullyan, R. (1997). The Riddle of Scheherazade and other amazing puzzles, ancient and modern. New York: Knopf.Google Scholar
  70. Stewart, I. (2001). Flatterland: Like Flatland, only more so. New York: Basic Books.Google Scholar
  71. van Delft, P., & Botermans, J. (1995). Creative puzzles of the world. Berkeley: Key Curriculum Press.Google Scholar
  72. Wells, D. (1992). The Penguin book of curious and interesting puzzles. Harmondsworth: Penguin.Google Scholar
  73. Yuki, H. (2007). Math girls. SoftBank Creative.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Victoria CollegeUniversity of TorontoTorontoCanada

Personalised recommendations