Skip to main content

Repetitive Sequences

  • Chapter
  • First Online:
  • 1318 Accesses

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The repetitive component of the genome of Actinidia spp. is poorly studied in comparison with those of many other plants. In this chapter, we critically introduce the features of this elusive yet important fraction of plant genomes and discuss the data available for the recently sequenced A. chinensis var. chinensis genome. New analyses focusing on evolutionary and comparative dynamics of LTR-retrotransposons are presented and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J-H, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Z-R, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12:1269–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J-J, Mackay S, Bailey P et al (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24(3):1242–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhou F, Li G, Xu Y (2009) MUST: a system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi. Gene 436(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  • Crowhurst RN, Gardner RC (1991) A genome-specific repeat sequence from kiwifruit (Actinidia deliciosa var. deliciosa). Theor Appl Genet 81(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Du C-G, Caronna J, He L-M, Dooner HK (2008) Computational prediction and molecular confirmation of Helitron transposons in the maize genome. BMC Genom 9(1):51

    Article  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC, Myers EW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21(Suppl 1):i152–i158

    Article  CAS  PubMed  Google Scholar 

  • Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf 9:18

    Article  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9(5):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group transposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20(14):3639–3644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser LG, Harvey CF, Crowhurst RN, De Silva HN (2004) EST-derived microsatellites from Actinidia species and their potential for mapping. Theor Appl Genet 108(6):1010–1016

    Article  CAS  PubMed  Google Scholar 

  • Fultz D, Choudury SG, Slotkin RK (2015) Silencing of active transposable elements in plants. Curr Opin Plant Biol 27:67–76

    Article  CAS  PubMed  Google Scholar 

  • Gong Z-Y, Wu Y-F, Koblížková A, Torres GA, Wang K, Iovene M et al (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24(9):3559–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray YH (2000) It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet 16(10):461–468

    Article  CAS  PubMed  Google Scholar 

  • Han Y-J, Wessler SR (2010) MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 38(22):e199

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoen DR, Bureau TE (2015) Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol Biol Evol 32(6):1487–1506

    Article  PubMed  Google Scholar 

  • Huang S, Ding J, Deng D, Tang W, Sun H, Liu D et al (2013) Draft genome of the kiwifruit Actinidia chinensis. Nat Commun 4:2640

    PubMed  PubMed Central  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Bao Z-R, Zhang X-Y, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431(7008):569–573

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogentic Genome Res 110:462–467

    Article  CAS  Google Scholar 

  • Jurka J, Bao W-D, Kojima K, Kapitonov VV (2011) Repetitive elements: Bioinformatic identification, classification and analysis. Encycl LIFE Sci 1–6 (Wiley Online Library). doi 10.1002/978040015902.a0005270.pub2

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304(5673):982

    Article  PubMed  Google Scholar 

  • Krebs JE, Goldstein ES, Kilpatrick ST (2013) Lewin’s essential GENES, 3rd edn. Jones and Bartlett LEARING, LLC, Burlington, MA, USA, p 119

    Google Scholar 

  • Kumar A, Pearce SR, McLean K et al (1997) The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetica 100(1–3):205–217

    Google Scholar 

  • Kurtz S, Narechania A, Stein JC, Ware D (2008) A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes. BMC Genom 9:517

    Article  Google Scholar 

  • Li R-Q, Ye J, Li S-G, Wang J, Han Y-J, Ye C et al (2005) ReAS: recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun. PLoS Comput Biol 1(4):e43

    Article  PubMed  PubMed Central  Google Scholar 

  • Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431(7006):364–370

    Article  CAS  PubMed  Google Scholar 

  • Man Y-P, Wang Y-C, Zhang L, Li Z-Z, Qin R, Jiang Z-W et al (2011) Development of microsatellite markers in Actinidia arguta (Actinidiaceae) based on the NCBI data platform. Am J Bot 98(11):e310–e315

    Article  PubMed  Google Scholar 

  • McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19(3):362–367

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37(9):997–1002

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-López M, García-Pérez JL (2010) DNA transposons: nature and applications in genomics. Curr Genom 11(2):115–128

    Article  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497(7451):579–584

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1972) So much “junk” DNA in our genome. Brookhaven Symp Biol 23:366–370

    CAS  PubMed  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H et al (2006) Doubling genome size without polyploidization: Dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16(10):1262–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21:i351–i358

    Article  CAS  PubMed  Google Scholar 

  • Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72(4):686–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20(1):43–45

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F-S, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Settles AM (2009) Transposon tagging and reverse genetics. In: Kriz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement. Biotechnology in agriculture and forestry, vol 63. Springer, Berlin, pp 143–159

    Google Scholar 

  • Smit AFA, Hubley R, Green P (2013–2015) RepeatMasker Open-4.0. http://www.repeatmasker.org

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The International Peach Genome Initiative, Verde I, Abbott AG, Scalabrin S, Jung S, Shu S-Q et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genet 45:487–494

    Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Thomas CA Jr (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analyses of copia retrotransposons in Triticae, rice and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia familes. Genome Res 17(7):1072–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35(Suppl 2):W265–W268

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav CB, Bonthala VS, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2015) Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database. DNA Res 22(1):79–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin H, Liu J, Xu Y-X, Liu X, Zhang S-L, Ma J-X et al (2013) TARE1, a mutated Copia-like LTR retrotransposon followed by recent massive amplification in tomato. PLoS ONE 8(7):e68587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F-F, Xu Y (2009) RepPop: a datatabase fo repetitive elements in Populus trichocarpa. BMC Genom 10:14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Zuccolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zuccolo, A. (2016). Repetitive Sequences. In: Testolin, R., Huang, HW., Ferguson, A. (eds) The Kiwifruit Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-32274-2_9

Download citation

Publish with us

Policies and ethics