Skip to main content

Genetics of Sugar and Starch Metabolism

  • Chapter
  • First Online:
The Kiwifruit Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Carbohydrate composition varies between different fruiting species and is the balance between the carbon supply to the fruit and its storage via a cascade of biochemical reactions. In kiwifruit, a starch-storing fruit, soluble solids content (SSC) during fruit development is determined by both the partitioning of carbohydrates into soluble and insoluble components, and the conversion of starch to sugars. The seasonal patterns of carbohydrate concentrations show great dissimilarities in Actinidia depending on species and tissue. However, ripe fruits of Actinidia chinensis var. chinensis and Actinidia chinensis var. deliciosa contain glucose and fructose as the predominant soluble sugars and sucrose in smaller amounts, while Actinidia arguta differs significantly, as its fruit contain mainly sucrose and great quantities of myo-inositol during the early phases of sugar accumulation. Here, we report an overview of the recent developments in the study of pathways controlling carbohydrate metabolism in kiwifruit, specifically focusing on the genes encoding the biosynthetic enzymes sucrose-phosphate synthase (SPS), l-myo-inositol-1-phosphate synthase (MIPS), ADP-glucose pyrophosphorylase (AGPase), and the degradative enzymes, such as sucrose synthase (SUS), invertases, and amylases. A brief outline of sugar transport and signaling has also been presented, helping to indicate the complexity of the genetic variation that underpins kiwifruit compositional differences. The availability of the Actinidia genome sequence represents an important starting point for the identification and characterization of new genes, providing a valuable tool for genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson RG, Gunaseelan K, Wang MY, Luo L, Wang T, Norling CL et al (2011) Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. J Exp Bot 62(11):3821–3835

    Article  CAS  PubMed  Google Scholar 

  • Azzi L, Deluche C, Gévaudant F, Frangne N, Delmas F, Hernould M et al (2015) Fruit growth-related genes in tomato. J Exp Bot 66(4):1075–1086

    Article  CAS  PubMed  Google Scholar 

  • Bahaji A, Li J, Sánchez-López ÁM, Baroja-Fernández E, Muñoz FJ, Ovecka M et al (2014) Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv 32(1):87–106

    Article  CAS  PubMed  Google Scholar 

  • Baker RF, Leach KA, Braun DM (2012) SWEET as sugar: new sucrose effluxers in plants. Mol Plant 5(4):766–768

    Article  PubMed  Google Scholar 

  • Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagro G, Montero M et al (2012) Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci USA 109(1):321–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55(396):397–409

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez L, de Godoy F, Baldet P, Demarco D, Osorio S, Quadrana L et al (2014) Silencing of the tomato sugar partitioning affecting protein (SPA) modifies sink strength through a shift in leaf sugar metabolism. Plant J 77(5):676–687

    Article  PubMed  Google Scholar 

  • Bertin N, Gautier H, Roche C (2002) Number of cells in tomato fruit depending on fruit position and source-sink balance during plant development. Plant Growth Regul 36(2):105–112

    Article  CAS  Google Scholar 

  • Bertin N, Causse M, Brunel B, Tricon D, Génard M (2009) Identification of growth processes involved in QTLs for tomato fruit size and composition. J Exp Bot 60(1):237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohner J, Bangerth F (1988) Effects of fruit set sequence and defoliation on cell number, cell size and hormone levels of tomato fruits (Lycopersicon esculentum Mill.) within a truss. Plant Growth Regul 7(3):141–155

    CAS  Google Scholar 

  • Boldingh H, Smith GS, Klages K (2000) Seasonal concentrations of non-structural carbohydrates of five Actinidia species in fruit, leaf and fine root tissue. Ann Bot 85(4):469–476

    Article  CAS  Google Scholar 

  • Boldingh H, Richardson A, Minchin P, MacRae E (2015) Planteose is a major sugar translocated in Actinidia arguta ‘Hortgem Tahi’. Sci Hortic 193:261–268

    Article  CAS  Google Scholar 

  • Brookfield P, Murphy P, Harker R, MacRae E (1997) Starch degradation and starch pattern indices; interpretation and relationship to maturity. Postharvest Biol Technol 11(1):23–30

    Article  CAS  Google Scholar 

  • Burdon J, Lallu N, Pidakala P, Barnett A (2013) Soluble solids accumulation and postharvest performance of ‘Hayward’ kiwifruit. Postharvest Biol Technol 80:1–8

    Article  CAS  Google Scholar 

  • Cheng CH, Seal AG, Boldingh HL, Marsh KB, MacRae EA, Murphy SJ et al (2004) Inheritance of taste characters and fruit size and number in a diploid Actinidia chinensis (kiwifruit) population. Euphytica 138(2):185–195

    Article  CAS  Google Scholar 

  • Chengappa S, Guilleroux M, Phillips W, Shields R (1999) Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit. Plant Mol Biol 40(2):213–221

    Article  CAS  PubMed  Google Scholar 

  • Chiera JM, Grabau EA (2007) Localization of myo-inositol phosphate synthase (GmMIPS-1) during the early stages of soybean seed development. J Exp Bot 58(8):2261–2268

    Article  CAS  PubMed  Google Scholar 

  • Chourey PS, Taliercio EW, Carlson SJ, Ruan Y-L (1998) Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol Gen Genet 259(1):88–96

    Article  CAS  PubMed  Google Scholar 

  • Cocaliadis MF, Fernández-Muñoz R, Pons C, Orzaez D, Granell A (2014) Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J Exp Bot 65(16):4589–4598

    Article  PubMed  Google Scholar 

  • Crevillen P, Ballicora MA, Merida A, Preiss J, Romero JM (2003) The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. J Biol Chem 278(31):28508–28515

    Article  CAS  PubMed  Google Scholar 

  • Crevillen P, Ventriglia T, Pinto F, Orea A, Merida A, Romero JM (2005) Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes. J Biol Chem 280(9):8143–8149

    Article  CAS  PubMed  Google Scholar 

  • Crowhurst RN, Gleave AP, MacRae EA, Ampomah-Dwamena C, Atkinson RG, Beuning LL et al (2008) Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genom 9(1):351

    Article  Google Scholar 

  • Cui M, Liang D, Ma F (2013) Molecular cloning and characterization of a cDNA encoding kiwifruit l -myo-inositol-1-phosphate synthase, a key gene of inositol formation. Mol Biol Rep 40(1):697–705

    Article  CAS  PubMed  Google Scholar 

  • D’Aoust M-A, Yelle S, Nguyen-Quoc B (1999) Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11(12):2407–2418

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M et al (2011) Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Mol Biol 76(1–2):1–18

    Article  CAS  PubMed  Google Scholar 

  • Dey PM (1980) Biosynthesis of planteose in Sesamum indicum. FEBS Lett 114(1):153–156

    Article  CAS  Google Scholar 

  • Esti M, Messia MC, Bertocchi P, Sinesio F, Moneta E, Nicotra A et al (1998) Chemical compounds and sensory assessment of kiwifruit (Actinidia chinensis (Planch.) var. chinensis): electrochemical and multivariate analyses. Food Chem 61(3):293–300

    Article  CAS  Google Scholar 

  • Falchi R, Zanon L, De Marco F, Nonis A, Pfeiffer A, Vizzotto G (2013) Tissue-specific and developmental expression pattern of abscisic acid biosynthetic genes in peach fruit: possible role of the hormone in the coordinated growth of seed and mesocarp. J Plant Growth Regul 32(3):519–532

    Article  CAS  Google Scholar 

  • Feng C, Chen M, Xu CJ, Bai L, Yin XR, Li X et al (2012) Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genom 13:19

    Article  CAS  Google Scholar 

  • Ferguson AR (2007) The need for characterisation and evaluation of germplasm: kiwifruit as an example. Euphytica 154(3):371–382

    Article  Google Scholar 

  • Fraser LG, Tsang GK, Datson PM, De Silva HN, Harvey CF, Gill GP et al (2009) A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genom 10:102

    Article  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97(9):4718–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman E, Carrari F, Liu Y-S, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305(5691):1786–1789

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Park WD (1995) Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell 7(9):1369–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung RWM, Langenkämper G, Gardner RC, MacRae E (2003) Differential expression within an SPS gene family. Plant Sci 164(4):459–470

    Article  CAS  Google Scholar 

  • Geigenberger P (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155(4):1566–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould N, Morrison DR, Clearwater MJ, Ong S, Boldingh HL, Minchin PEH (2013) Elucidating the sugar import pathway into developing kiwifruit berries (Actinidia deliciosa). N Z J Crop Hortic Sci 41(4):189–206

    Article  CAS  Google Scholar 

  • Granot D, Kelly G, Stein O, David-Schwartz R (2014) Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. J Exp Bot 65(3):809–819

    Article  CAS  PubMed  Google Scholar 

  • Haritatos E, Keller F, Turgeon R (1996) Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L. leaves: implications in phloem loading. Planta 198:614–622

    Article  CAS  Google Scholar 

  • Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG et al (2009) Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol 149(3):1541–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Ding J, Deng D, Tang W, Sun H, Liu D et al (2013) Draft genome of the kiwifruit Actinidia chinensis. Nat Commun 4:2640

    PubMed  PubMed Central  Google Scholar 

  • Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R et al (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  • Jukes C, Lewis D (1974) Planteose, the major soluble carbohydrate of seeds of Fraxinus excelsior. Phytochemistry 13(8):1519–1521

    Article  CAS  Google Scholar 

  • Klages K, Smith G, Bieleski R (1997) Myo-inositol is a major carbohydrate in species of Actinidia. Acta Hortic 444:361–368

    Article  CAS  Google Scholar 

  • Klages KU, Boldingh HL, Cooney JM, MacRae EA (2004) Planteose is a short-term storage carbohydrate in Actinidia leaves. Funct Plant Biol 31(12):1205–1214

    Article  CAS  Google Scholar 

  • Klann EM, Hall B, Bennett AB (1996) Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol 112(3):1321–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleczkowski LA, Kunz S, Wilczynska M (2010) Mechanisms of UDP-glucose synthesis in plants. Crit Rev Plant Sci 29(4):191–203

    Article  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7(3):235–246

    Article  CAS  PubMed  Google Scholar 

  • Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot 53(366):61–71

    Article  CAS  PubMed  Google Scholar 

  • Kühn C, Grof CP (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13(3):288–298

    Article  PubMed  Google Scholar 

  • Langenkämper G, McHale R, Gardner RC, MacRae E (1998) Sucrose-phosphate synthase steady-state mRNA increases in ripening kiwifruit. Plant Mol Biol 36(6):857–869

    Article  PubMed  Google Scholar 

  • Li J, Baroja-Fernández E, Bahaji A, Muñoz FJ, Ovecka M, Montero M et al (2013) Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol 54(2):282–294

    Article  CAS  PubMed  Google Scholar 

  • Ludewig F, Flügge UI (2013) Role of metabolite transporters in source-sink carbon allocation. Front Plant Sci 4:231

    Article  PubMed  PubMed Central  Google Scholar 

  • MacRae EA, Lallu N, Searle AN, Bowen JH (1989) Changes in the softening and composition of kiwifruit (Actinidia deliciosa) affected by maturity at harvest and postharvest treatments. J Sci Food Agr 49(4):413–430

    Article  CAS  Google Scholar 

  • MacRae E, Quick WP, Benker C, Stitt M (1992) Carbohydrate metabolism during postharvest ripening in kiwifruit. Planta 188(3):314–323

    Article  CAS  PubMed  Google Scholar 

  • McNeilage MA, Fraser LG, Tsang GK, Datson PM, De Silva HN, Crowhurst RN et al (2011) Molecular genetics and genomics and kiwifruit breeding. Acta Hortic 913:63–70

    Article  Google Scholar 

  • Menu T, Saglio P, Granot D, Dai N, Raymond P, Ricard B (2004) High hexokinase activity in tomato fruit perturbs carbon and energy metabolism and reduces fruit and seed size. Plant Cell Environ 27(1):89–98

    Article  CAS  Google Scholar 

  • Mitsuhashi N, Kondo M, Nakaune S, Ohnishi M, Hayashi M, Hara-Nishimura I et al (2008) Localization of myo-inositol-1-phosphate synthase to the endosperm in developing seeds of Arabidopsis. J Exp Bot 59(11):3069–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscatello S, Famiani F, Proietti S, Farinelli D, Battistelli A (2011) Sucrose synthase dominates carbohydrate metabolism and relative growth rate in growing kiwifruit (Actinidia deliciosa, cv Hayward). Scientia Hortic 128(3):197–205

    Article  CAS  Google Scholar 

  • Nardozza S, Boldingh HL, Richardson AC, Costa G, Marsh H, MacRae EA et al (2010a) Variation in carbon content and size in developing fruit of Actinidia deliciosa genotypes. Funct Plant Biol 37(6):545–554

    Article  CAS  Google Scholar 

  • Nardozza S, Hallett IC, McCartney R, Richardson AC, MacRae EA, Costa G et al (2010b) Is fruit anatomy involved in variation in fruit starch concentration between Actinidia deliciosa genotypes? Funct Plant Biol 38(1):63–74

    Article  Google Scholar 

  • Nardozza S, Boldingh HL, Osorio S, Höhne M, Wohlers M, Gleave AP et al (2013) Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism. J Exp Bot 64(16):5049–5063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama I (2007) Fruits of the Actinidia genus. Adv Food Nutr Res 52:293–324

    Article  CAS  PubMed  Google Scholar 

  • Richardson AC, Marsh KB, Boldingh HL, Pickering AH, Bulley SM, Frearson NJ et al (2004) High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant Cell Environ 27(4):423–435

    Article  CAS  Google Scholar 

  • Richardson AC, Boldingh HL, McAtee PA, Gunaseelan K, Luo Z, Atkinson RG et al (2011) Fruit development of the diploid kiwifruit, Actinidia chinensis ‘Hort16A’. BMC Plant Biol 11:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Roitsch T, González M-C (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9(12):606–613

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Rothe K, Porzel A, Neumann S, Grimm E (1999) Characteristics of the phloem path: analysis and distribution of carbohydrates in the petiole of Cyclamen. J Exp Bot 50(341):1807–1816

    Article  CAS  Google Scholar 

  • Ruan Y-L (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65:33–67

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y-L, Patrick JW (1995) The cellular pathway of postphloem sugar transport in developing tomato fruit. Planta 196(3):434–444

    Article  CAS  Google Scholar 

  • Ruan Y-L, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3(6):942–955

    Article  CAS  PubMed  Google Scholar 

  • Sanz ML, Villamiel M, Martı́nez-Castro I (2004) Inositols and carbohydrates in different fresh fruit juices. Food Chem 87(3):325–328

    Article  CAS  Google Scholar 

  • Scheible WR, González-Fontes A, Lauerer M, Müller-Röber B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9(5):783–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenger N, Keller F (2000) Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. Plant J 21(3):249–258

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis Version 6.0. Mol Biol Evol 30(12):2725–2729

    Google Scholar 

  • Tanou G, Minas IS, Karagiannis E, Tsikou D, Audebert S, Papadopoulou KK et al (2015) The impact of sodium nitroprusside and ozone in kiwifruit ripening physiology: a combined gene and protein expression profiling approach. Ann Bot 116(4):649–662

    Article  PubMed  Google Scholar 

  • Testolin R, Huang WG, Lain O, Messina R, Vecchione A, Cipriani G (2001) A kiwifruit (Actinidia spp.) linkage map based on microsatellites and integrated with AFLP markers. Theor Appl Genet 103(1):30–36

    Article  CAS  Google Scholar 

  • Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55(406):2131–2145

    Article  CAS  PubMed  Google Scholar 

  • Tiessen A, Prescha K, Branscheid A, Palacios N, McKibbin R, Halford NG et al (2003) Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. Plant J 35(4):490–500

    Article  CAS  PubMed  Google Scholar 

  • Xue S, Xu F, Li G, Zhou Y, Lin M, Gao Z et al (2013) Fine mapping TaFLW1, a major QTL controlling flag leaf width in bread wheat (Triticum aestivum L.). Theor Appl Genet 126(8):1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Yoshida KT, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S (1999) Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol 119(1):65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanon L, Falchi R, Santi S, Vizzotto G (2015) Sucrose transport and phloem unloading in peach fruit: potential role of two transporters localized in different cell types. Physiol Plant 154(2):179–193

    Article  CAS  PubMed  Google Scholar 

  • Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B et al (2009) RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol 150(3):1204–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC et al (2006) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol 142(1):220–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giannina Vizzotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vizzotto, G., Falchi, R. (2016). Genetics of Sugar and Starch Metabolism. In: Testolin, R., Huang, HW., Ferguson, A. (eds) The Kiwifruit Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-32274-2_15

Download citation

Publish with us

Policies and ethics