Skip to main content

Acid Metabolism in Kiwifruit

  • Chapter
  • First Online:
The Kiwifruit Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The acid: sugar balance within kiwifruit is primarily dependent on the citric acid content of the fruit. Fruit of Actinidia species have a relatively high total acid content (1–3 % w/w fresh weight) of which 40–60 % can be quinic acid, 40–60 % citric acid and 10 % malic acid (Marsh et al. 2009). The high content of quinic acid in kiwifruit, which can lead to high concentrations of chlorogenic acid, folic acid, vitamin K and other phytochemicals, is unusual in fruit. The accumulation of acid is a dynamic process, with citrate accumulating throughout fruit development, but quinic acid primarily accumulating in young fruit. Variations in the acidity of fleshy fruits are mainly due to the metabolism of malate and citrate in the fruit itself (Etienne et al. 2013): although the enzymes associated with acid accumulation are well known, the control mechanisms in this pathway are not well understood. We have observed up to a fivefold difference in total acid content within breeding populations, suggesting there is potential for development of a marker for total fruit acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cheng CH, Seal AG, Boldingh HL, Marsh KB, MacRae EA, Murphy SJ et al (2004) Inheritance of taste characters and fruit size and number in a diploid Actinidia chinensis (kiwifruit) population. Euphytica 138(2):185–195. doi:10.1023/b:euph.0000046802.28347.41

    Article  CAS  Google Scholar 

  • Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, Harel-Baia R et al (2014) The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Commun 5:4026. doi:10.1038/ncomms5026

  • Crowhurst RN, Gleave AP, MacRae EA, Ampomah-Dwamena C, Atkinson RG, Beuning LL et al (2008) Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genom 9:351

    Article  Google Scholar 

  • Ding L, Hofius D, Hajirezaei M-R, Fernie AR, Börnke F, Sonnewald U (2007) Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase in transgenic tobacco plants. J Exp Bot 58(8):2053–2067. doi:10.1093/jxb/erm059

    Article  CAS  PubMed  Google Scholar 

  • Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C (2013) What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J Exp Bot 64(6):1451–1469. doi:10.1093/jxb/ert035

    Article  CAS  PubMed  Google Scholar 

  • Fraser LG, Harvey CF, Crowhurst RN, de Silva HN (2004) EST-derived microsatellites from Actinidia species and their potential for mapping. Theor Appl Genet 108(6):1010–1016

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Carrington Y, Alber A, Ehlting J (2014) Molecular characterization of quinate and shikimate metabolism in Populus trichocarpa. J Biol Chem 289(34):23846–23858. doi:10.1074/jbc.M114.558536

    Article  CAS  PubMed  Google Scholar 

  • Hallett IC, Macrae EA, Wegrzyn TF (1992) Changes in kiwifruit cell-wall ultrastructure and cell packing during postharvest ripening. Int J Plant Sci 153(1):49–60. doi:10.1086/297006

    Article  Google Scholar 

  • Hallett IC, Wegrzyn TF, Macrae EA (1995) Starch degradation in kiwifruit - in-vivo and in-vitro ultrastructural studies. Int J Plant Sci 156(4):471–480. doi:10.1086/297269

    Article  CAS  Google Scholar 

  • Harker FR, Hallett IC (1994) Physiological and mechanical properties of kiwifruit tissue associated with texture change during cold storage. J Amer Soc Hort Sci 119(5):987–993

    Google Scholar 

  • Harker FR, Johnston JW (2008) Importance of texture in fruit and its interaction with flavour. In: Bruckner B, Wylie SG (eds) Fruit and vegetable flavour, recent advances and future prospects. Woodhead Publishing, Cambridge, pp 132–149. doi:10.1533/9781845694296.2.132

    Google Scholar 

  • Harker FR, Carr BT, Lenjo M, MacRae EA, Wismer WV, Marsh KB et al (2009) Consumer liking for kwifruit flavour: a meta-analysis of five studies on fruit quality. Food Qual Pref 20(1):30–41

    Article  Google Scholar 

  • Herrman KM, Weaver LM (1999) The shikimate pathway. Ann Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  Google Scholar 

  • Huang S, Ding J, Deng D, Tang W, Sun H, Liu D et al (2013) Draft genome of the kiwifruit Actinidia chinensis. Nat Commun 4:2640. doi:10.1038/ncomms3640

    PubMed  PubMed Central  Google Scholar 

  • Jaeger SR, Rossiter KL, Wismer WV, Harker FR (2003) Consumer-driven product development in the kiwifruit industry. Food Qual Pref 14(3):187–198. doi:10.1016/s0950-3293(02)00053-8

    Article  Google Scholar 

  • Jensen H, Krogfelt K, Cornett C, Hansen S, Christensen S (2002) Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus). J Agric Food Chem 50(23):6871–6874

    Google Scholar 

  • Lawless HT, Heymann H (1997) Sensory evaluation of food: principles and practices. Springer, New York

    Google Scholar 

  • Li Z-Z, Man Y-P, Lan X-Y, Wang Y-C (2013) Ploidy and phenotype variation of a natural Actinidia arguta population in the east of Daba Mountain located in a region of Shaanxi. Sci Hortic 161:259–265. doi:10.1016/j.scienta.2013.07.008

    Article  Google Scholar 

  • Marsh KB, Gonzalez PG, Echeverria E (2001) Partial characterisation of a H+ translocating inorganic pyrophosphatase from 3 citrus varieties differing in vacuolar pH. Physiol Plant 111(4):519–526

    Article  CAS  PubMed  Google Scholar 

  • Marsh KB, Friel EN, Gunson A, Lund C, MacRae E (2006) Perception of flavour in standardised fruit pulps with additions of acids or sugars. Food Qual Pref 17(5):376–386. doi:10.1016/j.foodqual.2005.04.011

    Article  Google Scholar 

  • Marsh KB, Boldingh HL, Shilton RS, Laing WA (2009) Changes in quinic acid metabolism during fruit development in three kiwifruit species. Funct Plant Biol 36(5):463–470. doi:10.1071/fp08240

    Article  CAS  Google Scholar 

  • Mittelstädt G, Negron L, Schofield LR, Marsh K, Parker EJ (2013) Biochemical and structural characterisation of dehydroquinate synthase from the New Zealand kiwifruit Actinidia chinensis. Arch Biochem Biophys 537(2):185–191. doi:10.1016/j.abb.2013.07.022

    Article  PubMed  Google Scholar 

  • Moing A, Svanella L, Rolin D, Gaudillere M, Gaudillere JP, Monet R (1998) Compositional changes during the fruit development of two peach cultivars differing in juice acidity. J Am Soc Hort Sci 123(5):770–775

    CAS  Google Scholar 

  • Nishiyama I, Fukuda T, Shimohashi A, Oota T (2008) Sugar and organic acid composition in the fruit juice of different Actinidia varieties. Food Sci Tech Res 14(1):67–73. doi:10.3136/fstr.14.67

    Article  CAS  Google Scholar 

  • Prescott J (2012) Taste matters: why we like the foods we do. Reaktion Books, London

    Google Scholar 

  • Rossiter KL, Young H, Walker SB, Miller M, Dawson DM (2000) The effects of sugars and acids on consumer acceptability of kiwifruit. J Sensory Stud 15(3):241–250

    Article  Google Scholar 

  • Sadka A, Dahan E, Cohen L, Marsh KB (2000) Aconitase activity and expression during the development of lemon fruit. Physiol Plant 108(3):255–262. doi:10.1034/j.1399-3054.2000.108003255.x

    Article  CAS  Google Scholar 

  • Singh S, Christendat D (2006) Structure of Arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway. Biochemistry 45(25):7787–7796

    Article  CAS  PubMed  Google Scholar 

  • Walton E, De Jong T (1990) Growth and compositional changes in kiwifruit berries from three Californian locations. Ann Bot 66:285–298

    CAS  Google Scholar 

  • White TL, Prescott J (2007) Chemosensory cross-modal stroop effects: congruent odors facilitate taste identification. Chem Senses 32(4):337–341. doi:10.1093/chemse/bjm001

    Article  PubMed  Google Scholar 

  • Wismer WV, Harker FR, Gunson FA, Rossiter KL, Lau K, Seal AG et al (2005) Identifying flavour targets for fruit breeding: a kiwifruit example. Euphytica 141(1–2):93–104. doi:10.1007/s10681-005-5891-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Marsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marsh, K.B., Harker, F.R. (2016). Acid Metabolism in Kiwifruit. In: Testolin, R., Huang, HW., Ferguson, A. (eds) The Kiwifruit Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-32274-2_14

Download citation

Publish with us

Policies and ethics