Skip to main content

Measuring Large-Scale Synchronization with Human MEG and EEG: Challenges and Solutions

  • Chapter
  • First Online:

Abstract

Specific kinds of neuronal interactions, such as phase coupling of neuronal oscillations, are likely to be essential systems-level mechanisms for coordinating neuronal communication, integration, and segregation. The functional roles of these interactions during cognitive tasks in healthy humans can be investigated with magneto- and electroencephalography (MEG/EEG), the only means for noninvasive electrophysiological recordings of human cortical activity. While advances in source modeling have opened new avenues for assessing inter-areal interactions with MEG/EEG, several factors limit the accuracy and inferential value of such analyses. In this chapter, we provide an overview of common source analysis strategies for mapping inter-areal interactions with MEG/EEG. Linear mixing between sources, as caused by volume conduction and signal mixing, is the principal confounder in connectivity analysis and always leads to false positive observations. We discuss the sensitivity of different interaction metrics to directly and indirectly caused false positives and conclude with approaches to mitigate these problems. In conclusion, MEG and EEG are becoming increasingly useful for assessing inter-areal neuronal interaction in humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antiqueira L, Rodrigues FA, van Wijk BCM, Costa LF, Daffertshofer A (2010) Estimating complex cortical networks via surface recordings—a critical note. Neuroimage 53:439–449

    Article  PubMed  Google Scholar 

  • Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassett DS, Nelson BG, Mueller BA, Camchong J, Lim KO (2011) Altered resting state complexity in schizophrenia. Neuroimage 59:2196–2207

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159

    Article  CAS  PubMed  Google Scholar 

  • Brookes MJ, Woolrich MW, Barnes GR (2012) Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. Neuroimage 63:910–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruns A (2004) Fourier-, hilbert- and wavelet-based signal analysis: are they really different approaches? J Neurosci Methods 137:321–332

    Article  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  CAS  PubMed  Google Scholar 

  • Cammoun L, Gigandet X, Meskaldji D, Thiran JP, Sporns O, Do KQ, Maeder P, Meuli R, Hagmann P (2012) Mapping the human connectome at multiple scales with diffusion spectrum MRI. J Neurosci Methods 203:386–397

    Article  PubMed  Google Scholar 

  • Daffertshofer A, van Wijk BCM (2011) On the influence of amplitude on the connectivity between phases. Front Neuroinform 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  PubMed  Google Scholar 

  • Drakesmith M, El-Deredy W, Welbourne S (2013) Reconstructing coherent networks from electroencephalography and magnetoencephalography with reduced contamination from volume conduction or magnetic field spread. PLoS One 8, e81553

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22

    Article  PubMed  Google Scholar 

  • Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88:220–235

    Article  CAS  PubMed  Google Scholar 

  • Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B, Oostenveld R, Parkkonen L, Taylor JR, van Wassenhove V, Wibral M, Schoffelen JM (2013) Good practice for conducting and reporting MEG research. Neuroimage 65:349–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6, e159

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamalainen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36:165–171

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ (2012) Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. Neuroimage 59:3909–3921

    Article  PubMed  PubMed Central  Google Scholar 

  • Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884–890

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2, e124

    Article  PubMed  PubMed Central  Google Scholar 

  • Korhonen O, Palva S, Palva JM (2014) Sparse weightings for collapsing inverse solutions to cortical parcellations optimize M/EEG source reconstruction accuracy. J Neurosci Methods 226C:147–160

    Article  Google Scholar 

  • Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci 12:535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yao X, Fox J, Jefferys JG (2007) Interaction dynamics of neuronal oscillations analysed using wavelet transforms. J Neurosci Methods 160:178–185

    Article  PubMed  Google Scholar 

  • Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hamalainen MS (2006) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. Neuroimage 31:160–171

    Article  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66

    Article  PubMed  Google Scholar 

  • Mosher JC, Leahy RM, Lewis PS (1999) EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng 46:245–259

    Article  CAS  PubMed  Google Scholar 

  • Newman M (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  • Nikulin VV, Linkenkaer-Hansen K, Nolte G, Lemm S, Muller KR, Ilmoniemi RJ, Curio G (2007) A novel mechanism for evoked responses in the human brain. Eur J Neurosci 25:3146–3154

    Article  PubMed  Google Scholar 

  • Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25:3962–3972

    Article  CAS  PubMed  Google Scholar 

  • Palva S, Palva JM (2012) Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn Sci 16:219–230

    Article  PubMed  Google Scholar 

  • Palva JM, Monto S, Kulashekhar S, Palva S (2010) Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci USA 107:7580–7585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palva S, Kulashekhar S, Hamalainen M, Palva JM (2011) Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention. J Neurosci 31:5013–5025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    Article  PubMed  Google Scholar 

  • Schoffelen JM, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain Mapp 30:1857–1865

    Article  PubMed  Google Scholar 

  • Sharon D, Hamalainen MS, Tootell RB, Halgren E, Belliveau JW (2007) The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. Neuroimage 36:1225–1235

    Article  PubMed  PubMed Central  Google Scholar 

  • Siebenhühner F, Weiss SA, Coppola R, Weinberger DR, Bassett DS (2013) Intra- and inter-frequency brain network structure in health and schizophrenia. PLoS One 8, e72351

    Article  PubMed  PubMed Central  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(49–65):111–125

    Google Scholar 

  • Singer W (2009) Distributed processing and temporal codes in neuronal networks. Cogn Neurodyn 3:189–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinkkonen J, Tiitinen H, Naatanen R (1995) Gabor filters: an informative way for analysing event-related brain activity. J Neurosci Methods 56:99–104

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, van Straaten ECW (2012) Go with the flow: use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics. Neuroimage 62:1415–1428

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28:1178–1193

    Article  PubMed  Google Scholar 

  • Taulu S, Simola J, Kajola M (2005) Applications of the signal space separation method. IEEE Trans Signal Process 53:3359–3372

    Article  Google Scholar 

  • Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A (1997) Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 44:867–880

    Article  PubMed  Google Scholar 

  • van Wijk Bernadette CM, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS One 5, e13701

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CM (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55:1548–1565

    Article  PubMed  Google Scholar 

  • Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165

    Article  PubMed  Google Scholar 

  • Watts DJ (2004) Small worlds. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Whalen C, Maclin EL, Fabiani M, Gratton G (2008) Validation of a method for coregistering scalp recording locations with 3D structural MR images. Hum Brain Mapp 29:1288–1301

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Matias Palva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siebenhühner, F., Lobier, M., Wang, S.H., Palva, S., Palva, J.M. (2016). Measuring Large-Scale Synchronization with Human MEG and EEG: Challenges and Solutions. In: Palva, S. (eds) Multimodal Oscillation-based Connectivity Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-32265-0_1

Download citation

Publish with us

Policies and ethics