Skip to main content

Modeling the Blood Vessels of the Brain

  • Conference paper
  • First Online:
Book cover High Performance Computer Applications (ISUM 2015)

Abstract

The results described in this work are part of a larger project. The long term goal of this project is to help physicians predict the hemodynamic changes, and associated risks, caused by different treatment options for brain arteriovenous malformations. First, we need to build a model of the vascular architecture of each specific patient. Our approach to build these models is described in this work. Later we will use the model of the vascular architecture to simulate the velocity and pressure gradients of the blood flowing within the vessels, and the stresses on the blood vessel walls, before and after treatment. We are developing a computer program to describe each blood vessel as a parametric curve, where each point within this curve includes a normal vector that points in the opposite direction of the pressure gradient. The shape of the cross section of the vessel in each point is described as an ellipse. Our program is able to describe the geometry of a blood vessel using as an input a cloud of dots. The program allows us to model any blood vessel, and other tubular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osborn, A.G.: Diagnostic cerebral angiography. Am. J. Neuroradiol. 20(9), 1767–1769 (1999)

    MathSciNet  Google Scholar 

  2. Kim, D.-J., Czosnyka, Z., Kasprowicz, M., Smieleweski, P., Baledent, O., Guerguerian, A.-M., Pickard, J.D., Czosnyka, M.: Continuous monitoring of the monro-kellie doctrine: is it possible? J. Neurotrauma 297, 1354–1363 (2012)

    Article  Google Scholar 

  3. Mokri, B.: The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology 5612, 1746–1748 (2001)

    Article  Google Scholar 

  4. van Laar, P.J., Hendrikse, J., Golay, X., Lu, H., van Osch, M.J., van der Grond, J.: In vivo flow territory mapping of major brain feeding arteries. NeuroImage 29(1), 136–144 (2006)

    Article  Google Scholar 

  5. Duret, H.: Recherches anatomiques sur la circulation de l’encéphale. Archives de Physiologie normale et pathologique 6, 60–91 (1874)

    Google Scholar 

  6. Pérez, V.H.: Atlas del sistema arterial cerebral con variantes anatómicas. Editorial Limusa (2002)

    Google Scholar 

  7. Conn, P.M.: Neuroscience in Medicine. Humana Press, Totowa (2008)

    Book  Google Scholar 

  8. Fontana, H., Belziti, H., Requejo, F., Recchia, M., Buratti, S., Recchia, M.: La circulación cerebral en condiciones normales y patológicas: Parte ii. las arterias de la base. Revista Argentina de Neurocirugía 21(2), 65–70 (2007)

    Google Scholar 

  9. Gomes, CRdG, Chopard, R.P.: A morphometric study of age-related changes in the elastic systems of the common carotid artery and internal carotid artery in humans. Eur. J. Morphol. 41(3–4), 131–137 (2003)

    Google Scholar 

  10. Canham, P.B., Talman, E.A., Finlay, H.M., Dixon, J.G.: Medial collagen organization in human arteries of the heart and brain by polarized light microscopy. Connect. Tissue Res. 26(1–2), 121–134 (1991)

    Article  Google Scholar 

  11. Rowe, A., Finlay, H., Canham, P.: Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy. J. Vasc. Res. 40, 406–415 (2003)

    Article  Google Scholar 

  12. Duvernoy, H.M., Delon, S., Vannson, J.: Cortical blood vessels of the human brain. Brain Res. Bull. 7(5), 519–579 (1981)

    Article  Google Scholar 

  13. Wright, S.N., Kochunov, P., Mut, F., Bergamino, M., Brown, K.M., Mazziotta, J.C., Toga, A.W., Cebral, J.R., Ascoli, G.A.: Digital reconstruction and morphometric analysis of human brain arterial vasculature from magnetic resonance angiography. NeuroImage 82, 170–181 (2013)

    Article  Google Scholar 

  14. Dobrin, P.B.: Mechanical properties of arteries. Physiol. Rev. 58(2), 397–460 (1978)

    Google Scholar 

  15. Rosenberg, J.B., Shiloh, A.L., Savel, R.H., Eisen, L.A.: Non-invasive methods of estimating intracranial pressure. Neurocrit. Care 15(3), 599–608 (2011)

    Article  Google Scholar 

  16. Rossitti, S., Löfgren, J.: Vascular dimensions of the cerebral arteries follow the principle of minimum work. Stroke J. Cereb. Circ. 24(3), 371–377 (1993)

    Article  Google Scholar 

  17. Budohoski, K.P., Czosnyka, M., de Riva, N., Smielewski, P., Pickard, J.D., Menon, D.K., Kirkpatrick, P.J., Lavinio, A.: The relationship between cerebral blood flow autoregulation and cerebrovascular pressure reactivity after traumatic brain injury. Neurosurgery 71(3), 652–661 (2012)

    Article  Google Scholar 

  18. Kim, M.O., Adji, A., O’Rourke, M.F., Avolio, A.P., Smielewski, P., Pickard, J.D., Czosnyka, M.: Principles of cerebral hemodynamics when intracranial pressure is raised: lessons from the peripheral circulation. J. Hypertens. 33(6), 1233–1241 (2015)

    Article  Google Scholar 

  19. Chung, E., Chen, G., Alexander, B., Cannesson, M.: Non-invasive continuous blood pressure monitoring: a review of current applications. Front. Med. 7(1), 91–101 (2013)

    Article  Google Scholar 

  20. Lee, K.J., Park, C., Oh, J., Lee, B.: Non-invasive detection of intracranial hypertension using a simplified intracranial hemo- and hydro-dynamics model. Biomed. Eng. Online 14(1), 51 (2015)

    Article  Google Scholar 

  21. Simmonds, M.J., Meiselman, H.J., Baskurt, O.K.: Blood rheology and aging. J. Geriatr. Cardiol. 10(3), 291–301 (2013)

    Google Scholar 

  22. Dolenska, S., Interpretation, A.D.: Understanding Key Concepts for the FRCA. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  23. Faraci, F.M., Heistad, D.D.: Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol. Rev. 78(1), 53–97 (1998)

    Google Scholar 

  24. Obrenovitch, T.P.: Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol. Rev. 88(1), 211–247 (2008)

    Article  Google Scholar 

  25. Alastruey, J., Moore, S.M., Parker, K.H., David, T., Peiró, J., Sherwin, S.J.: Reduced modelling of blood flow in the cerebral circulation: coupling 1-D, 0-D and cerebral auto-regulation models. Int. J. Numer. Meth. Fluids 56(8), 1061 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perdikaris, P., Grinberg, L., Karniadakis, G.E.: An effective fractal-tree closure model for simulating blood flow in large arterial networks. Ann. Biomed. Eng. 43(6), 1432–1442 (2014)

    Article  Google Scholar 

  27. Cymberknop, L.J., Armentano, R.L., Legnani, W., Pessana, F.M., Craiem, D., Graf, S., Barra, J.G.: Contribution of arterial tree structure to the arterial pressure fractal behavior. J. Phys: Conf. Ser. 477, 012030 (2013). IOP Publishing

    Google Scholar 

  28. Aslanidou, L., Trachet, B., Reymond, P., Fraga-Silva, R., Segers, P., Stergiopulos, N.: A 1D model of the arterial circulation in mice. ALTEX 33, 13–28 (2015)

    Google Scholar 

  29. Reymond, P., Vardoulis, O., Stergiopulos, N.: Generic and patient-specific models of the arterial tree. J. Clin. Monit. Comput. 26(5), 375–382 (2012)

    Article  Google Scholar 

  30. Chiu, J.-J., Chien, S.: Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91(1), 327–387 (2011)

    Article  Google Scholar 

  31. Sáez-Pérez, J.: Distensibilidad arterial: un parámetro más para valorar el riesgo cardiovascular. SEMERGEN-Medicina de Familia 34(6), 284–290 (2008)

    Article  Google Scholar 

  32. Pries, A., Neuhaus, D., Gaehtgens, P.: Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. Heart Circ. Physiol. 263(6), H1770–H1778 (1992)

    Google Scholar 

  33. Sochi, T.: Non-Newtonian Rheology in Blood Circulation (2013). arXiv preprint arxiv:1306.2067

  34. Liu, Y., Liu, W.: Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220(1), 139–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ouared, R., Chopard, B.: Lattice Boltzmann simulations of blood flow: non-newtonian rheology and clotting processes. J. Stat. Phys. 121, 1–2 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fedosov, D.A., Caswell, B., Karniadakis, G.E.: A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98, 2215–2225 (2010)

    Article  Google Scholar 

  37. Epstein, S., Vergnaud, A.-C., Elliott, P., Chowienczyk, P., Alastruey, J.: Numerical assessment of the stiffness index. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1969–1972. IEEE (2014)

    Google Scholar 

  38. Akdemir, H., Oktem, I.S., Tucer, B., Menkü, A., Başaslan, K., Günaldi, O.: Intraoperative microvascular Doppler sonography in aneurysm surgery. Minimally Invasive Neurosurgery, MIN 49(5), 312–316 (2006)

    Article  Google Scholar 

  39. Hui, P.-J., Yan, Y.-H., Zhang, S.-M., Wang, Z., Yu, Z.-Q., Zhou, Y.-X., Li, X.-D., Cui, G., Zhou, D., Hui, G.-Z., Lan, Q.: Intraoperative microvascular Doppler monitoring in intracranial aneurysm surgery. Chin. Med. J. 126, 2424–2429 (2013)

    Google Scholar 

  40. Badie, B., Lee, F.T., Pozniak, M.A., Strother, C.M.: Intraoperative sonographic assessment of graft patency during extracranial-intracranial bypass. AJNR Am. J. Neuroradiol. 21, 1457–1459 (2000)

    Google Scholar 

  41. Steinman, D.A.: Computational modeling and flow diverters: a teaching moment. Am. J. Neuroradiol. 32(6), 981–983 (2011)

    Article  Google Scholar 

  42. Hawthorne, C., Piper, I.: Monitoring of intracranial pressure in patients with traumatic brain injury. Front. Neurol. 5, 121 (2014)

    Article  Google Scholar 

  43. Balakhovsky, K., Jabareen, M., Volokh, K.Y.: Modeling rupture of growing aneurysms. J. Biomech. 47, 653–658 (2014)

    Article  Google Scholar 

  44. Meng, H., Feng, Y., Woodward, S.H., Bendok, B.R., Hanel, R.A., Guterman, L.R., Hopkins, L.N.: Mathematical model of the rupture mechanism of intracranial saccular aneurysms through daughter aneurysm formation and growth. Neurol. Res. 27, 459–467 (2005)

    Article  Google Scholar 

  45. Utter, B., Rossmann, J.S.: Numerical simulation of saccular aneurysm hemodynamics: influence of morphology on rupture risk. J. Biomech. 40(12), 2716–2722 (2007)

    Article  Google Scholar 

  46. Xiang, J., Tutino, V.M., Snyder, K.V., Meng, H.: CFD: computational fluid dynamics or confounding factor dissemination? the role of hemodynamics in intracranial aneurysm rupture risk assessment. AJNR Am. J. Neuroradiol. 35, 1849–1857 (2013)

    Article  Google Scholar 

  47. Russin, J., Babiker, H., Ryan, J., Rangel-Castilla, L., Frakes, D., Nakaji, P.: Computational fluid dynamics to evaluate the management of a giant internal carotid artery aneurysm. World Neurosurg. 83(6), 1057–1065 (2015)

    Article  Google Scholar 

  48. Jeong, W., Rhee, K.: Hemodynamics of cerebral aneurysms: computational analyses of aneurysm progress and treatment. Comput. Math. Meth. Med. 2012, 782801 (2012)

    Article  MATH  Google Scholar 

  49. Morales, H.G., Larrabide, I., Geers, A.J., San Román, L., Blasco, J., Macho, J.M., Frangi, A.F.: A virtual coiling technique for image-based aneurysm models by dynamic path planning. IEEE Trans. Med. Imaging 32, 119–129 (2013)

    Article  Google Scholar 

  50. Babiker, M.H., Chong, B., Gonzalez, L.F., Cheema, S., Frakes, D.H.: Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics. J. Biomech. 46, 2809–2816 (2013)

    Article  Google Scholar 

  51. Raoult, H., Bannier, E., Maurel, P., Neyton, C., Ferré, J.-C., Schmitt, P., Barillot, C., Gauvrit, J.-Y.: Hemodynamic quantification in brain arteriovenous malformations with time-resolved spin-labeled magnetic resonance angiography. Stroke 45(8), 2461–2464 (2014)

    Article  Google Scholar 

  52. Telegina, N., Chupakhin, A., Cherevko, A.: Local model of arteriovenous malformation of the human brain. In: IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences (2013)

    Google Scholar 

  53. Andisheh, B., Bitaraf, M.A., Mavroidis, P., Brahme, A., Lind, B.K.: Vascular structure and binomial statistics for response modeling in radiosurgery of cerebral arteriovenous malformations. Phys. Med. Biol. 55(7), 2057–2067 (2010)

    Article  Google Scholar 

  54. Nowinski, W.L., Thirunavuukarasuu, A., Volkau, I., Baimuratov, R., Hu, Q., Aziz, A., Huang, S.: Informatics in Radiology (infoRAD): three-dimensional atlas of the brain anatomy and vasculature. Radiographics: Rev. Publ. Radiol. Soc. North Am. Inc. 25, 263–271 (2005)

    Article  Google Scholar 

  55. Volkau, I., Zheng, W., Baimouratov, R., Aziz, A., Nowinski, W.L.: Geometric modeling of the human normal cerebral arterial system. IEEE Trans. Med. Imaging 24(4), 529–539 (2005)

    Article  Google Scholar 

  56. Volkau, I., Ng, T.T., Marchenko, Y., Nowinski, W.L.: On geometric modeling of the human intracranial venous system. IEEE Trans. Med. Imaging 27, 745–51 (2008)

    Article  Google Scholar 

  57. Nowinski, W.L., Thirunavuukarasuu, A., Volkau, I., Marchenko, Y., Aminah, B., Puspitasari, F., Runge, V.M.: A three-dimensional interactive atlas of cerebral arterial variants. Neuroinformatics 7, 255–264 (2009)

    Article  Google Scholar 

  58. Nowinski, W.L., Volkau, I., Marchenko, Y., Thirunavuukarasuu, A., Ng, T.T., Runge, V.M.: A 3D model of human cerebrovasculature derived from 3T magnetic resonance angiography. Neuroinformatics 7, 23–36 (2009)

    Article  Google Scholar 

  59. Nowinski, W.L., Chua, B.C., Marchenko, Y., Puspitsari, F., Volkau, I., Knopp, M.V.: Three-dimensional reference and stereotactic atlas of human cerebrovasculature from 7 Tesla. NeuroImage 55, 986–998 (2011)

    Article  Google Scholar 

  60. Nowinski, W.L., Thaung, T.S.L., Chua, B.C., Yi, S.H.W., Ngai, V., Yang, Y., Chrzan, R., Urbanik, A.: Three-dimensional stereotactic atlas of the adult human skull correlated with the brain, cranial nerves, and intracranial vasculature. J. Neurosci. Methods 246, 65–74 (2015)

    Article  Google Scholar 

  61. Iacono, M.I., Neufeld, E., Akinnagbe, E., Bower, K., Wolf, J., Vogiatzis Oikonomidis, I., Sharma, D., Lloyd, B., Wilm, B.J., Wyss, M., Pruessmann, K.P., Jakab, A., Makris, N., Cohen, E.D., Kuster, N., Kainz, W., Angelone, L.M.: Mida: a multimodal imaging-based detailed anatomical model of the human head and neck. PLoS ONE 10, e0124126 (2015)

    Article  Google Scholar 

  62. Halĩr, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: Proceedings of 6th International Conference in Central Europe on Computer Graphics and Visualization, WSCG, vol. 98, pp. 125–132 (1998)

    Google Scholar 

  63. Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21, 476–480 (1999)

    Article  Google Scholar 

  64. Watson, G.: Least squares fitting of circles and ellipses to measured data. BIT Numer. Math. 39(1), 176–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ray, A., Srivastava, D.C.: Non-linear least squares ellipse fitting using the genetic algorithm with applications to strain analysis. J. Struct. Geol. 30, 1593–1602 (2008)

    Article  Google Scholar 

  66. Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55(6), 2197–2208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We would like to thank Juan Carlos Cajas, Mariano Velazquez, Jazmin Aguado, Marina López, Alfonso Santiago and Abel Gargallo from the Barcelona Supercomputing Center for their valuable advice. This work was partially supported by ABACUS, CONACyT grant EDOMEX-2011-C01-165873.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Klapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Weinstein, N., Pedroza-Ríos, K.G., Nathal, E., Sigalotti, L.D.G., Gitler, I., Klapp, J. (2016). Modeling the Blood Vessels of the Brain. In: Gitler, I., Klapp, J. (eds) High Performance Computer Applications. ISUM 2015. Communications in Computer and Information Science, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-319-32243-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32243-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32242-1

  • Online ISBN: 978-3-319-32243-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics