Skip to main content

Genetic Engineering Approaches for Algae

  • Chapter
  • First Online:
  • 1228 Accesses

Abstract

Genetic engineering has allowed for the development of tremendous advances in biomedicine, including the production of biopharmaceuticals (BFs) in several expression hosts; in which algae are considered a next generation platform with attractive attributes. The genetic engineering approaches that allow for the use of transgenic algae as BFs biofactories are analyzed in the present chapter. The transformation methods for addressing chloroplast and nuclear transformation are described including Agrobacterium infection, glass bead treatment, particle bombardment, and electroporation. An updated outlook on the nuclear and chloroplast expression strategies is provided, comparing them in terms of yields, stability, and biosynthetic capacity. Due to recent advances including multicistronic systems, protein secretion approaches, new strains, and selection markers; efficient transgene expression and high protein yields are envisioned. In conclusion current genetic engineering tools are fuelling the developments in the molecular pharming field with relevant prospects for achieving improvements in yields and expanding the spectrum of target species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe J, Hori S, Tsuchikane Y, Kitao N, Kato M, Sekimoto H (2011) Stable nuclear transformation of the Closterium peracerosum-strigosum-littorale complex. Plant Cell Physiol 52(9):1676–1685

    Article  CAS  PubMed  Google Scholar 

  • Barahimipour R, Strenkert D, Neupert J, Schroda M, Merchant SS, Bock R (2015) Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii. Plant J. doi:10.1111/tpj.13033

    PubMed  Google Scholar 

  • Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5’- and 3’-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 274:625–636

    Article  CAS  PubMed  Google Scholar 

  • Bateman JM, Purton S (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol Gen Genet 263:404–410

    Article  CAS  PubMed  Google Scholar 

  • Blowers AD, Bogorad L, Shark KB, Sanford JC (1989) Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome. Plant Cell 1(1):123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock R, Warzecha H (2010) Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol 28(5):246–252

    Article  CAS  PubMed  Google Scholar 

  • Bourras S, Rouxel T, Meyer M (2015) Agrobacterium tumefaciens Gene transfer: how a plant pathogen hacks the nuclei of plant and nonplant organisms. Phytopathology 105(10):1288–1301

    Article  CAS  PubMed  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sandford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Breiman A, Fawcett TW, Ghirardi ML, Mattoo AK (1992) Plant organelles contain distinct peptidylprolyl cis, trans-isomerases. J Biol Chem 267(30):21293–21296

    CAS  PubMed  Google Scholar 

  • Brown LE, Sprecher SL, Keller LR (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 11(4):2328–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brueggeman AJ, Kuehler D, Weeks DP (2014) Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnol J 12(7):894–902

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9:925–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheney D, Metz B, Stiller J (2001) Agrobacterium-mediated genetic transformation in the macroscopic marine red alga Porphyra yezoensis. J Phycol 37:11

    Google Scholar 

  • Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70(11):3240–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci U S A 104:20770–20775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danna K, Nathans D (1971) Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci U S A 68(12):2913–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies JP, Weeks DP, Grossman AR (1992) Expression of the arylsulfatase gene from the f32-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res 20(12):2959–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8(10):2803–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229(4):873–883

    Article  CAS  PubMed  Google Scholar 

  • Fei X, Deng X (2007) A novel Fe deficiency-responsive element (FeRE) regulates the expression of atx1 in Chlamydomonas reinhardtii. Plant Cell Physiol 48(10):1496–1503

    Article  CAS  PubMed  Google Scholar 

  • Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265(5):888–894

    Article  CAS  PubMed  Google Scholar 

  • Franklin S, Ngo B, Efuet E, Mayfield SP, May SP (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30(6):733–744

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19(3):353–361

    Article  CAS  PubMed  Google Scholar 

  • Gan SY, Qin S, Othman RY, Yu D, Phang SM (2003) Transient expression of lacZ in particle bombarded Gracilaria changii (Gracilariales, Rhodophyta). J Appl Phycol 15:345–349

    Article  Google Scholar 

  • Garcia-Echauri SA, Cardineau GA (2015) TETX: a novel nuclear selection marker for Chlamydomonas reinhardtii transformation. Plant Methods 11:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gelvin SB (2012) Traversing the Cell: Agrobacterium T-DNA’s Journey to the host genome. Front Plant Sci 3:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5(2):287–297

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Res 19(15):4083–4089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldschmidt-Clermont M (1998) Chloroplast transformation and reverse genetics. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Kluwer Academic Publishers, Dordrecht, pp 139–149

    Google Scholar 

  • Heitzer M, Eckert A, Fuhrmann M, Griesbeck C (2007) Influence of codon bias on the expression of foreign genes in microalgae. Adv Exp Med Biol 616:46–53

    Article  PubMed  Google Scholar 

  • Helliwell KE, Scaife MA, Sasso S, Araujo APU, Purton S, Smith AG (2014) Unraveling vitamin B12-responsive gene regulation in algae. Plant Physiol 165(1):388–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 203:209–213

    Article  Google Scholar 

  • Hoover DM, Lubkowski J (2002) DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nuc Acids Res 30, e43

    Article  Google Scholar 

  • Hu Z, Zhao Z, Wu Z, Fan Z, Chen J, Wu J, Li J (2011) Successful expression of heterologous egfp gene in the mitochondria of a photosynthetic eukaryote Chlamydomonas reinhardtii. Mitochondrion 11(5):716–721

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Fan Z, Zhao Z, Chen J, Li J (2012) Stable expression of antibiotic-resistant gene ble from Streptoalloteichus hindustanus in the mitochondria of Chlamydomonas reinhardtii. PLoS One 7(4):e35542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Weber JC, Hinson TK, Mathieson AC, Minocha SC (1996) Transient expression of the GUS reporter gene in the protoplasts and partially digested cells of Ulva lactuca. Botanica Mar 39:467–474

    Article  CAS  Google Scholar 

  • Iwai M, Ikeda K, Shimojima M, Ohta H (2014) Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Plant Biotechnol J 12(6):808–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14(3):189–195

    Article  CAS  PubMed  Google Scholar 

  • Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108(52):21265–21269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87(3):1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindle KL, Schnell RA, Fernández E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109:2589–2601

    Article  CAS  PubMed  Google Scholar 

  • Kindle KL, Richards KL, Stern DB (1991) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 88(5):1721–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtzman AM, Cheney DP (1991) Direct gene transfer and transient expression in a marine red alga using the biolistic method. J Phycol 27(Suppl):42

    Google Scholar 

  • Lauersen KJ, Berger H, Mussgnug JH, Kruse O (2013) Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotechnol 167(2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Leon R, Couso I, Fernández E (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicellular microalga Chlamydomonas reinhardtii. J Biotechnol 130(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Lerche K, Hallmann A (2009) Stable nuclear transformation of Gonium pectorale. BMC Biotechnol 9:64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lerche K, Hallmann A (2013) Stable nuclear transformation of Eudorina elegans. BMC Biotechnol 13:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerche K, Hallmann A (2014) Stable nuclear transformation of Pandorina morum. BMC Biotechnol 14:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levitan A, Trebitsh T, Kiss V, Pereg Y, Dangoor I, Danon A (2005) Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc Natl Acad Sci U S A 102(17):6225–6230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Gao D, Hu H (2014) High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Biosci Biotechnol Biochem 78(5):812–817

    Article  CAS  PubMed  Google Scholar 

  • Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14(4):441–447

    Article  CAS  Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Bio 5(2):164–172

    Article  CAS  Google Scholar 

  • Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 5(3):402–412

    Article  CAS  PubMed  Google Scholar 

  • Merchant S, Bogorad L (1987) Metal ion regulated gene expression: use of a plastocyanin-less mutant of Chlamydomonas reinhardtii to study the Cu(II)-dependent expression of cytochrome c-552. EMBO J 6(9):2531–2535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michelet L, Lefebvre-Legendre L, Burr SE, Rochaix JD, Goldschmidt-Clermont M (2011) Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Plant Biotechnol J 9(5):565–574

    Article  CAS  PubMed  Google Scholar 

  • Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671

    Article  CAS  PubMed  Google Scholar 

  • Moulin M, Nguyen GT, Scaife MA, Smith AG, Fitzpatrick TB (2013) Analysis of Chlamydomonas thiamin metabolism in vivo reveals riboswitch plasticity. Proc Natl Acad Sci U S A 110(36):14622–14627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muto M, Henry RE, Mayfield SP (2009) Accumulation and processing of a recombinant protein designed as a cleavable fusion to the endogenous Rubisco LSU protein in Chlamydomonas chloroplast. BMC Biotechnol 9:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson JA, Savereide PB, Lefebvre PA (1994) The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol 14(6):4011–4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57(6):1140–1150

    Article  CAS  PubMed  Google Scholar 

  • Nickelsen J, Van Dillewijn J, Rahire M, Rochaix J (1994) Determinants for stability of the chloroplast psbD RNA are located within its short leader region in Chlamydomonas reinhardtii. EMBO J 13(13):3182–3191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oey M, Ross IL, Hankamer B (2014) Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae. PLoS One 9(2), e86841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohresser M, Matagne RF, Loppes R (1997) Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr Genet 31(3):264–271

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lee Y, Lee JH, Jin E (2013) Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. Planta 238(6):1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Plucinak TM, Horken KM, Jiang W, Fostvedt J, Nguyen ST, Weeks DP (2015) Improved and versatile viral 2A platforms for dependable and inducible high-level expression of dicistronic nuclear genes in Chlamydomonas reinhardtii. Plant J 82(4):717–729

    Article  CAS  PubMed  Google Scholar 

  • Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    Article  CAS  PubMed  Google Scholar 

  • Purton S (2007) Tools and techniques for chloroplast transformation of Chlamydomonas. Adv Exp Med Biol 616:34–45

    Article  PubMed  Google Scholar 

  • Qin S, Sun GQ, Jiang P, Zou LH, Wu Y, Tseng CK (1999) Review of genetic engineering of Laminaria japonica (Laminariales, Phaeophyta) in China. Hydrobiologia 137:469–472

    Article  Google Scholar 

  • Qin S, Yu DZ, Jiang P, Teng CY, Zeng CK (2003) Stable expression of lacZ reporter gene in seaweed Undaria pinnatifida. High Technol Lett 13:7–89

    Google Scholar 

  • Quax TE, Claassens NJ, Söll D, van der Oost J (2015) Codon bias as a means to fine-tune gene expression. Mol Cell 59(2):149–161

    Article  CAS  PubMed  Google Scholar 

  • Quinn JM, Merchant S (1995) Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7(5):623–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramundo S, Rahire M, Schaad O, Rochaix JD (2013) Repression of essential chloroplast genes reveals new signaling pathways and regulatory feedback loops in chlamydomonas. Plant Cell 25(1):167–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasala BA, Mayfield SP (2014) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123:227–239. doi:10.1007/s11120-014-9994-7

    Article  PubMed  CAS  Google Scholar 

  • Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7:e43349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasala BA, Barrera DJ, Ng J, Plucinak TM, Rosenberg JN, Weeks DP, Oyler GA, Peterson TC, Haerizadeh F, Mayfield SP (2013) Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii. Plant J 74(4):545–556

    Article  CAS  PubMed  Google Scholar 

  • Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 9(4), e94028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rathod JP, Prakash G, Pandit R, Lali AM (2013) Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri. Photosynth Res 118(1–2):141–146

    Article  CAS  PubMed  Google Scholar 

  • Remacle C, Cline S, Boutaffala L, Gabilly S, Larosa V, Barbieri MR, Coosemans N, Hamel PP (2009) The ARG9 gene encodes the plastid-resident N-acetyl ornithine aminotransferase in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 8(9):1460–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosales-Mendoza S, Orellana-Escobedo L, Romero-Maldonado A, Decker EL, Reski R (2014) The potential of Physcomitrella patens as a platform for the production of plant-based vaccines. Expert Rev Vaccines 13(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Ruecker O, Zillner K, Groebner-Ferreira R, Heitzer M (2008) Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 280(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto W, Kindle KL, Stern DB (1993) In vivo analysis of Chlamydomonas chloroplast petD gene expression using stable transformation of beta-glucuronidase translational fusions. Proc Natl Acad Sci U S A 90:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79(1):206–209

    Article  CAS  Google Scholar 

  • Sawyer AL, Hankamer BD, Ross IL (2015) Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter. Planta 241(5):1287–1302

    Article  CAS  PubMed  Google Scholar 

  • Scaife MA, Nguyen GT, Rico J, Lambert D, Helliwell KE, Smith AG (2015) Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J 82(3):532–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiedlmeier B, Schmitt R, Müller W, Kirk MM, Gruber H, Mages W, Kirk DL (1994) Nuclear transformation of Volvox carteri. Proc Natl Acad Sci U S A 91:5080–5084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82(3):221–240

    Article  CAS  PubMed  Google Scholar 

  • Schroda M, Blocker D, Beck C (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148(4):1821–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277(1–2):221–229

    Article  CAS  PubMed  Google Scholar 

  • Sørensen I, Fei Z, Andreas A, Willats WG, Domozych DS, Rose JK (2014) Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of charophyte green algae, the immediate ancestors of land plants. Plant J 77(3):339–351

    Article  PubMed  CAS  Google Scholar 

  • Surzycki R, Cournac L, Peltier G, Rochaix JD (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci U S A 104(44):17548–17553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37(3):133–138

    Article  CAS  PubMed  Google Scholar 

  • Talebi AF, Tohidfar M, Tabatabaei M, Bagheri A, Mohsenpor M, Mohtashami SK (2013) Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 40(7):4421–4428

    Article  CAS  PubMed  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21(12):963–977

    Article  CAS  PubMed  Google Scholar 

  • ten Lohuis MR, Miller DJ (1998) Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J 13:427–435

    Article  Google Scholar 

  • Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60(5):523–533

    Article  CAS  PubMed  Google Scholar 

  • Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP (2013) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A 110(1):E15–E22

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17(2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Ferguson AA, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Simpson JP, Sanjaya, TerBus A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the Heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villand P, Eriksson M, Samuelsson G (1997) Carbon dioxide and light regulation of promoters controlling the expression of mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Biochem J 327:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von der Heyde EL, Klein B, Abram L, Hallmann A (2015) The inducible nitA promoter provides a powerful molecular switch for transgene expression in Volvox carteri. BMC Biotechnol 15:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamano T, Iguchi H, Fukuzawa H (2013) Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. J Biosci Bioeng 115(6):691–694

    Article  CAS  PubMed  Google Scholar 

  • Yoshimori RN (1971) PhD thesis. University of California, San Francisco

    Google Scholar 

  • Young REB, Purton S (2014) Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression. Plant J 80(5):915–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22(6):775–783

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosales-Mendoza, S. (2016). Genetic Engineering Approaches for Algae. In: Algae-Based Biopharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-32232-2_2

Download citation

Publish with us

Policies and ethics