Skip to main content

Stem Cells

  • Chapter
  • First Online:
Management of Fecal Incontinence

Abstract

Stem cells are unspecialized cells having two key properties, the capacity of self-renewal and the ability of generating differentiated cells. Based on the different development phases of an organism, different stem cell types can be isolated. Among these, multipotent adult stem cells are committed cells able of differentiating into all mature cell lineages typical of the organ tissues in which they reside. The multipotent mesenchymal stem cells (MSCs), a type of adult stem cells, are a promising cell source for tissue engineering and cell-based therapies since their use in clinical applications does not imply neither ethical problems nor teratoma risk formation. Bone marrow has been the main source of human mesenchymal stem cells (hMSCs), even with the highly invasive isolation procedures and the low cell quantity obtained. Therefore, the identification of an alternative source of hMSCs has been an important issue, and in this context, the adipose and neonatal tissues, including placenta, are a promising choice for their anti-inflammatory, anti-fibrotic, and pro-regenerative characteristics. Placental and adipose-derived hMSCs could be a good option in severe muscle injury and particularly for sphincter incontinence regeneration. In this context, Lipogems®, rich in hMSCs from autologous lipoaspirated fat, is obtained in a closed disposable device system without using enzymes, additives, or other manipulations. Recently, the Lipogems® technique was used successfully to treat patients with fecal incontinence, according to the Helsinki Declaration and approved by the ethics committee. This safe and well-tolerated procedure did not have adverse events on the patients and improved their contractile activity of the anal sphincters and anocutaneous reflex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramalho-Santos M, Willenbring H. On the origin of the term “stem cell”. Cell Stem Cell. 2007;1(1):35–8.

    Article  CAS  PubMed  Google Scholar 

  2. Wilson EB. The cell in development and inheritance. New York: The MacMillan Company; 1896.

    Google Scholar 

  3. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001;17(1):387–403.

    Article  CAS  PubMed  Google Scholar 

  4. Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol. 2001;17(1):435–62.

    Article  CAS  PubMed  Google Scholar 

  5. Papaioannou V. Stem cells and differentiation. Differentiation. 2001;68(4–5):153–4.

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  7. Hussein SM, Nagy AA. Progress made in the reprogramming field: new factors, new strategies and a new outlook. Curr Opin Genet Dev. 2012;22(5):435–43.

    Article  CAS  PubMed  Google Scholar 

  8. Bayart E, Cohen-Haguenauer O. Technological overview of iPS induction from human adult somatic cells. Curr Gene Ther. 2013;13(2):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rajasingh J. Reprogramming of somatic cells. Prog Mol Biol Transl Sci. 2012;111:51–82.

    Article  CAS  PubMed  Google Scholar 

  10. Robertson JA. Human embryonic stem cell research: ethical and legal issues. Nat Rev Genet. 2001;2(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  11. Dhar D, Hsi-En Ho J. Stem cell research policies around the world. Yale J Biol Med. 2009;82(3):113–5.

    PubMed  PubMed Central  Google Scholar 

  12. Lee J-H, Lee JB, Shapovalova Z, Fiebig-Comyn A, Mitchell RR, Laronde S, Szabo E, Benoit YD, Bhatia M. Somatic transcriptome priming gates lineage-specific differentiation potential of human-induced pluripotent stem cell states. Nat Commun. 2014;5:5605.

    Article  CAS  PubMed  Google Scholar 

  13. Riggs JW, Barrilleaux BL, Varlakhanova N, Bush KM, Chan V, Knoepfler PS. Induced pluripotency and oncogenic transformation are related processes. Stem Cells Dev. 2012;22(1):37–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. de la Morena MT, Gatti RA. A history of bone marrow transplantation. Hematol Oncol Clin North Am. 2011;25(1):1–15.

    Article  PubMed  Google Scholar 

  15. Martin PJ, Hansen JA, Storb R, Donnall Thomas E. Human marrow transplantation: an immunological perspective. Adv Immunol. 1987;40:379–438.

    Article  CAS  PubMed  Google Scholar 

  16. Chinen J, Buckley RH. Transplantation immunology: solid organ and bone marrow. J Allergy Clin Immunol. 2010;125(2):S324–35.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bow EJ. Infection risk and cancer chemotherapy: the impact of the chemotherapeutic regimen in patients with lymphoma and solid tissue malignancies. J Antimicrob Chemother. 1998;41(4):1–5.

    Article  CAS  PubMed  Google Scholar 

  18. Vanichsetakul P. Clinical use of cord blood for stem cell transplantation. J Med Assoc Thailand. 2005;88:S93.

    Google Scholar 

  19. Goldstein G, Toren A, Nagler A. Transplantation and other uses of human umbilical cord blood and stem cells. Curr Pharm Des. 2007;13(13):1363–73.

    Article  CAS  PubMed  Google Scholar 

  20. Chen M, Przyborowski M, Berthiaume F. Stem cells for skin tissue engineering and wound healing. Crit Rev Biomed Eng. 2009;37(4–5):399–421.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wei X, Yang X, Z-p H, F-f Q, Shao L, Y-f S. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013;34(6):747–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Friedenstein A, Kuralesova AI. Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation. 1971;12(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  23. Bianchi G, Borgonovo G, Pistoia V, Raffaghello L. Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol. 2011;26(7):941.

    CAS  PubMed  Google Scholar 

  24. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.

    Article  CAS  PubMed  Google Scholar 

  25. Granero-Molto F, Weis JA, Longobardi L, Spagnoli A. Role of mesenchymal stem cells in regenerative medicine: application to bone and cartilage repair. Expert Opin Biol Ther. 2008;8(3):255.

    Article  CAS  PubMed  Google Scholar 

  26. Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010;28(3):585–96.

    CAS  PubMed  Google Scholar 

  27. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, S-i T, Ide C, Y-i N. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005;309(5732):314–7.

    Article  CAS  PubMed  Google Scholar 

  28. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  29. Scherjon SA, Kleijburg‐van der Keur C, de Groot‐Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22(7):1338–45.

    Article  PubMed  Google Scholar 

  30. Anjos-Afonso F, Bonnet D. Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood. 2007;109(3):1298–306.

    Article  CAS  PubMed  Google Scholar 

  31. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  32. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsai MS, Hwang SM, Chen KD, Lee YS, Hsu LW, Chang YJ, Wang CN, Peng HH, Chang YL, Chao AS. Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells. 2007;25(10):2511–23.

    Article  CAS  PubMed  Google Scholar 

  34. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363(9419):1439–41.

    Article  PubMed  Google Scholar 

  35. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, Giunti D, Ceravolo A, Cazzanti F, Frassoni F. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood. 2005;106(5):1755–61.

    Article  CAS  PubMed  Google Scholar 

  36. Kim J-M, Lee S-T, Chu K, Jung K-H, Song E-C, Kim S-J, Sinn D-I, Kim J-H, Park D-K, Kang K-M. Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res. 2007;1183:43–50.

    Article  CAS  PubMed  Google Scholar 

  37. Parekkadan B, Van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2(9), e941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci. 2009;106(38):16357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amado LC, Saliaris AP, Schuleri KH, John MS, Xie J-S, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A. 2005;102(32):11474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kharaziha P, Hellström PM, Noorinayer B, Farzaneh F, Aghajani K, Jafari F, Telkabadi M, Atashi A, Honardoost M, Zali MR. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I–II clinical trial. Eur J Gastroenterol Hepatol. 2009;21(10):1199–205.

    Article  CAS  PubMed  Google Scholar 

  41. Peng L, Xie D, Lin BL, Liu J, Zhu H, Xie C, Zheng Y, Gao Z. Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: short‐term and long‐term outcomes. Hepatology. 2011;54(3):820–8.

    Article  PubMed  Google Scholar 

  42. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26–36.

    Article  PubMed  Google Scholar 

  43. Rasulov M, Vasil’chenkov A, Onishchenko N, Krasheninnikov M, Kravchenko V, Gorshenin T, Pidtsan R, Potapov I. First experience in the use of bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull Exp Biol Med. 2005;139(1):141–4.

    Article  CAS  PubMed  Google Scholar 

  44. Yamada Y, Ueda M, Hibi H, Baba S. A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: a clinical case report. Int J Periodontics Restorative Dent. 2006;26(4):363–9.

    PubMed  Google Scholar 

  45. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeng X, Y-s Z, Ma Y-h, Lu L-y, B-l D, Zhang W, Li Y, Chan WY. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transplant. 2011;20(11–12):1881–99.

    Article  PubMed  Google Scholar 

  47. Goodwin M, Sueblinvong V, Eisenhauer P, Ziats NP, LeClair L, Poynter ME, Steele C, Rincon M, Weiss DJ. Bone marrow‐derived mesenchymal stromal cells inhibit Th2‐mediated allergic airways inflammation in mice. Stem Cells. 2011;29(7):1137–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ortiz LA, DuTreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci. 2007;104(26):11002–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roddy GW, Oh JY, Lee RH, Bartosh TJ, Ylostalo J, Coble K, Rosa RH, Prockop DJ. Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF‐α stimulated gene/protein 6. Stem Cells. 2011;29(10):1572–9.

    Article  CAS  PubMed  Google Scholar 

  50. Alves H, Van Ginkel J, Groen N, Hulsman M, Mentink A, Reinders M, Van Blitterswijk C, De Boer J. A mesenchymal stromal cell gene signature for donor age. PLoS One. 2012;7(8), e42908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26(2):300–11.

    Article  PubMed  Google Scholar 

  52. Parolini O, Soncini M, Evangelista M, Schmidt D. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regen Med. 2009;4(4):275.

    Article  CAS  PubMed  Google Scholar 

  53. Azuara-Blanco A, Pillai C, Dua HS. Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophthalmol. 1999;83(4):399–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Solomon A, Espana EM, Tseng SC. Amniotic membrane transplantation for reconstruction of the conjunctival fornices. Ophthalmology. 2003;110(1):93–100.

    Article  PubMed  Google Scholar 

  55. Kubo M, Sonoda Y, Muramatsu R, Usui M. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci. 2001;42(7):1539–46.

    CAS  PubMed  Google Scholar 

  56. Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, Lombardi G, Arienti D, Calamani F, Zatti D, Paul P. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation. 2004;78(10):1439–48.

    Article  PubMed  Google Scholar 

  57. Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T‐cell suppression and stimulation capabilities. Stem Cells. 2008;26(1):182–92.

    Article  CAS  PubMed  Google Scholar 

  58. Crisco JJ, Jokl P, Heinen GT, Connell MD, Panjabi MM. A muscle contusion injury model biomechanics, physiology, and histology. Am J Sports Med. 1994;22(5):702–10.

    Article  CAS  PubMed  Google Scholar 

  59. Carosio S, Berardinelli MG, Aucello M, Musarò A. Impact of ageing on muscle cell regeneration. Ageing Res Rev. 2011;10(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  60. Tidball JG. Inflammatory processes in muscle injury and repair. Am J Phys Regul Integr Comp Phys. 2005;288(2):R345–53.

    CAS  Google Scholar 

  61. Karpati G, Molnar MJ. Muscle fibre regeneration in human skeletal muscle diseases. In: Schiaffino S and Partridge T editors. Skeletal muscle repair and regeneration. Dordrecht: Springer; 2008. p. 199–216.

    Google Scholar 

  62. Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ. Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics. 2003;14(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  63. Kääriäinen M, Kääriäinen J, Järvinen TL, Sievänen H, Kalimo H, Järvinen M. Correlation between biomechanical and structural changes during the regeneration of skeletal muscle after laceration injury. J Orthop Res. 1998;16(2):197–206.

    Article  PubMed  Google Scholar 

  64. Nozaki M, Li Y, Zhu J, Ambrosio F, Uehara K, Fu FH, Huard J. Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth. Am J Sports Med. 2008;36(12):2354–62.

    Article  PubMed  Google Scholar 

  65. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg. 2002;84(5):822–32.

    PubMed  Google Scholar 

  66. Moore R, Silver R, Moore J. Physiological apoptotic agents have different effects upon human amnion epithelial and mesenchymal cells. Placenta. 2003;24(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  67. Casey ML, MacDonald PC. Interstitial collagen synthesis and processing in human amnion: a property of the mesenchymal cells. Biol Reprod. 1996;55(6):1253–60.

    Article  CAS  PubMed  Google Scholar 

  68. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  69. Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012;53(2):227–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Trayhurn P, Wood I. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans. 2005;33(Pt 5):1078–81.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  PubMed  Google Scholar 

  72. Rodbell M. The metabolism of isolated fat cells. J Biol Chem. 1964;239:375–80.

    Google Scholar 

  73. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100(9):1249–60.

    Article  CAS  PubMed  Google Scholar 

  74. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G. Immunophenotype of human adipose‐derived cells: temporal changes in stromal‐associated and stem cell–associated markers. Stem Cells. 2006;24(2):376–85.

    Article  PubMed  Google Scholar 

  75. Yu G, Wu X, Dietrich MA, Polk P, Scott LK, Ptitsyn AA, Gimble JM. Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy. 2010;12(4):538–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hicok KC, Hedrick MH. Automated isolation and processing of adipose-derived stem and regenerative cells. In: Gimble JM, Bunnell BA, editors. Adipose-derived stem cells. New York/Dordrecht/Heidelberg/London: Springer; 2011. p. 87–105.

    Chapter  Google Scholar 

  78. Gimble JM, Bunnell BA, Casteilla L, Jung JS, Yoshimura K. Phases I–III clinical trials using adult stem cells. Stem Cells Int. 2011;2010:2.

    Google Scholar 

  79. Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38(3):201–9.

    Article  PubMed  Google Scholar 

  80. Thesleff T, Lehtimäki K, Niskakangas T, Mannerström B, Miettinen S, Suuronen R, Öhman J. Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction. Neurosurgery. 2011;68(6):1535–40.

    Article  PubMed  Google Scholar 

  81. Lendeckel S, Jödicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt H-P. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Cranio-Maxillofac Surg. 2004;32(6):370–3.

    Article  Google Scholar 

  82. Caplan AI. Adult mesenchymal stem cells: when, where, and how. Stem Cells Int. 2015:628767.

    Google Scholar 

  83. Santa María L, Rojas CV, Minguell JJ. Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells. Exp Cell Res. 2004;300(2):418–26.

    Article  PubMed  CAS  Google Scholar 

  84. Bossolasco P, Corti S, Strazzer S, Borsotti C, Del Bo R, Fortunato F, Salani S, Quirici N, Bertolini F, Gobbi A. Skeletal muscle differentiation potential of human adult bone marrow cells. Exp Cell Res. 2004;295(1):66–78.

    Article  CAS  PubMed  Google Scholar 

  85. Feki A, Faltin D, Lei T, Dubuisson J-B, Jacob S, Irion O. Sphincter incontinence: is regenerative medicine the best alternative to restore urinary or anal sphincter function? Int J Biochem Cell Biol. 2007;39(4):678–84.

    Article  CAS  PubMed  Google Scholar 

  86. Tran C, Damaser MS. The potential role of stem cells in the treatment of urinary incontinence. Ther Adv Urol. 2014;7(1):22–40.

    Article  CAS  Google Scholar 

  87. Lane FL, Jacobs S. Stem cells in gynecology. Am J Obstet Gynecol. 2012;207(3):149–56.

    Article  PubMed  Google Scholar 

  88. Wang H-J, Chuang Y-C, Chancellor MB. Development of cellular therapy for the treatment of stress urinary incontinence. Int Urogynecol J. 2011;22(9):1075–83.

    Article  CAS  PubMed  Google Scholar 

  89. Vaizey CJ, Norton C, Thornton MJ, Nicholls RJ, Kamm MA. Long-term results of repeat anterior anal sphincter repair. Dis Colon Rectum. 2004;47(6):858–63.

    Article  PubMed  Google Scholar 

  90. Baeten CG. Safety and efficacy of dynamic graciloplasty for fecal incontinence. Dis Colon Rectum. 2000;43(6):743–51.

    Article  CAS  PubMed  Google Scholar 

  91. Lehur P, Glemain P, des Varannes SB, Buzelin J, Leborgne J. Outcome of patients with an implanted artificial anal sphincter for severe faecal incontinence A single institution report. Int J Colorectal Dis. 1998;13(2):88–92.

    Article  CAS  PubMed  Google Scholar 

  92. Norderval S, Öian P, Revhaug A, Vonen B. Anal incontinence after obstetric sphincter tears: outcome of anatomic primary repairs. Dis Colon Rectum. 2005;48(5):1055–61.

    Article  PubMed  Google Scholar 

  93. Zorcolo L, Covotta L, Bartolo DC. Outcome of anterior sphincter repair for obstetric injury: comparison of early and late results. Dis Colon Rectum. 2005;48(3):524–31.

    Article  PubMed  Google Scholar 

  94. Dmochowski RR, Blaivas JM, Gormley EA, Juma S, Karram MM, Lightner DJ, Luber KM, Rovner ES, Staskin DR, Winters JC. Update of AUA guideline on the surgical management of female stress urinary incontinence. J Urol. 2010;183(5):1906–14.

    Article  PubMed  Google Scholar 

  95. Kuhn A, Eggeman C, Burkhard F, Mueller MD. Correction of erosion after suburethral sling insertion for stress incontinence: results and related sexual function. Eur Urol. 2009;56(2):371–7.

    Article  PubMed  Google Scholar 

  96. Kotb AF, Campeau L, Corcos J. Urethral bulking agents: techniques and outcomes. Curr Urol Rep. 2009;10(5):396–400.

    Article  PubMed  Google Scholar 

  97. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45(11), e54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Patel DM, Shah J, Srivastava AS. Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int. 2015: 496218.

    Google Scholar 

  99. Godara P, Nordon RE, McFarland CD. Mesenchymal stem cells in tissue engineering. J Chem Technol Biotechnol. 2008;83(4):397–407.

    Article  CAS  Google Scholar 

  100. Chancellor MB, Yokoyama T, Tirney S, Mattes CE, Ozawa H, Yoshimura N, de Groat WC, Huard J. Preliminary results of myoblast injection into the urethra and bladder wall: a possible method for the treatment of stress urinary incontinence and impaired detrusor contractility. Neurourol Urodyn. 2000;19(3):279–87.

    Article  CAS  PubMed  Google Scholar 

  101. Carr L, Steele D, Steele S, Wagner D, Pruchnic R, Jankowski R, Erickson J, Huard J, Chancellor M. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J. 2008;19(6):881–3.

    Article  CAS  Google Scholar 

  102. Lin AS, Carrier S, Morgan DM, Lue TF. Effect of simulated birth trauma on the urinary continence mechanism in the rat. Urology. 1998;52(1):143–51.

    Article  CAS  PubMed  Google Scholar 

  103. Kerns JM, Damaser MS, Kane JM, Sakamoto K, Benson JT, Shott S, Brubaker L. Effects of pudendal nerve injury in the female rat. Neurourol Urodyn. 2000;19(1):53–69.

    Article  CAS  PubMed  Google Scholar 

  104. Chermansky CJ, Cannon TW, Torimoto K, Fraser MO, Yoshimura N, de Groat WC, Chancellor MB. A model of intrinsic sphincteric deficiency in the rat: electrocauterization. Neurourol Urodyn. 2004;23(2):166–71.

    Article  PubMed  Google Scholar 

  105. Kefer JC, Liu G, Daneshgari F. Pubo-urethral ligament injury causes long-term stress urinary incontinence in female rats: an animal model of the integral theory. J Urol. 2009;181(1):397–400.

    Article  PubMed  Google Scholar 

  106. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AB, Deans R, Marshak DR, Flake AW. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6(11):1282–6.

    Article  CAS  PubMed  Google Scholar 

  107. Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, Okita K. Transplantation of bone marrow cells reduces CCl4‐induced liver fibrosis in mice. Hepatology. 2004;40(6):1304–11.

    Article  PubMed  Google Scholar 

  108. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005–11.

    Article  CAS  PubMed  Google Scholar 

  109. Cruz M, Dissaranan C, Cotleur A, Kiedrowski M, Penn M, Damaser M. Pelvic organ distribution of mesenchymal stem cells injected intravenously after simulated childbirth injury in female rats. Obstet Gynecol Int. 2012;2012:612946.

    Article  PubMed  CAS  Google Scholar 

  110. Dissaranan C, Cruz MA, Kiedrowski MJ, Balog BM, Gill BC, Penn MS, Goldman HB, Damaser MS. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant. 2014;23(11):1395–406.

    Article  PubMed  Google Scholar 

  111. Rombouts W, Ploemacher R. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia. 2003;17(1):160–70.

    Article  CAS  PubMed  Google Scholar 

  112. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox Jr CS. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18(5):683–92.

    Article  CAS  PubMed  Google Scholar 

  113. Chermansky CJ, Tarin T, Kwon D-D, Jankowski RJ, Cannon TW, de Groat WC, Huard J, Chancellor MB. Intraurethral muscle-derived cell injections increase leak point pressure in a rat model of intrinsic sphincter deficiency. Urology. 2004;63(4):780–5.

    Article  PubMed  Google Scholar 

  114. Fu Q, Song X-F, Liao G-L, Deng C-L, Cui L. Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology. 2010;75(3):718–23.

    Article  PubMed  Google Scholar 

  115. Kinebuchi Y, Aizawa N, Imamura T, Ishizuka O, Igawa Y, Nishizawa O. Autologous bone‐marrow‐derived mesenchymal stem cell transplantation into injured rat urethral sphincter. Int J Urol. 2010;17(4):359–68.

    Article  PubMed  Google Scholar 

  116. Lim J-J, Jang J-B, Kim J-Y, Moon S-H, Lee C-N, Lee K-J. Human umbilical cord blood mononuclear cell transplantation in rats with intrinsic sphincter deficiency. J Korean Med Sci. 2010;25(5):663–70.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lin G, Wang G, Banie L, Ning H, Shindel AW, Fandel TM, Lue TF, Lin C-S. Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy. 2010;12(1):88–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xu Y, Song Y, Lin Z. Transplantation of muscle-derived stem cells plus biodegradable fibrin glue restores the urethral sphincter in a pudendal nerve-transected rat model. Braz J Med Biol Res. 2010;43(11):1076–83.

    Article  CAS  PubMed  Google Scholar 

  119. Zou XH, Zhi YL, Chen X, Jin HM, Wang LL, Jiang YZ, Yin Z, Ouyang HW. Mesenchymal stem cell seeded knitted silk sling for the treatment of stress urinary incontinence. Biomaterials. 2010;31(18):4872–9.

    Article  CAS  PubMed  Google Scholar 

  120. Kim S-O, Na HS, Kwon D, Joo SY, Kim HS, Ahn Y. Bone-marrow-derived mesenchymal stem cell transplantation enhances closing pressure and leak point pressure in a female urinary incontinence rat model. Urol Int. 2011;86(1):110–6.

    Article  PubMed  Google Scholar 

  121. Corcos J, Loutochin O, Campeau L, Eliopoulos N, Bouchentouf M, Blok B, Galipeau J. Bone marrow mesenchymal stromal cell therapy for external urethral sphincter restoration in a rat model of stress urinary incontinence. Neurourol Urodyn. 2011;30(3):447–55.

    Article  PubMed  Google Scholar 

  122. Imamura T, Ishizuka O, Kinebuchi Y, Kurizaki Y, Nakayama T, Ishikawa M, Nishizawa O. Implantation of autologous bone-marrow-derived cells reconstructs functional urethral sphincters in rabbits. Tissue Eng Part A. 2011;17(7–8):1069–81.

    Article  CAS  PubMed  Google Scholar 

  123. Wu G, Song Y, Zheng X, Jiang Z. Adipose-derived stromal cell transplantation for treatment of stress urinary incontinence. Tissue Cell. 2011;43(4):246–53.

    Article  PubMed  Google Scholar 

  124. Zhao W, Zhang C, Jin C, Zhang Z, Kong D, Xu W, Xiu Y. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur Urol. 2011;59(1):155–63.

    Article  CAS  PubMed  Google Scholar 

  125. Chun SY, Kwon JB, Chae SY, Lee JK, Js B, Kim BS, Kim HT, Yoo ES, Lim JO, Yoo JJ. Combined injection of three different lineages of early‐differentiating human amniotic fluid‐derived cells restores urethral sphincter function in urinary incontinence. BJU Int. 2014;114(5):770–83.

    Article  PubMed  Google Scholar 

  126. Sèbe P, Doucet C, Cornu J-N, Ciofu C, Costa P, de Medina SGD, Pinset C, Haab F. Intrasphincteric injections of autologous muscular cells in women with refractory stress urinary incontinence: a prospective study. Int Urogynecol J. 2011;22(2):183–9.

    Article  PubMed  Google Scholar 

  127. Gotoh M, Yamamoto T, Kato M, Majima T, Toriyama K, Kamei Y, Matsukawa Y, Hirakawa A, Funahashi Y. Regenerative treatment of male stress urinary incontinence by periurethral injection of autologous adipose‐derived regenerative cells: 1‐year outcomes in 11 patients. Int J Urol. 2014;21(3):294–300.

    Article  PubMed  Google Scholar 

  128. Gräs S, Klarskov N, Lose G. Intraurethral injection of autologous minced skeletal muscle: a simple surgical treatment for stress urinary incontinence. J Urol. 2014;192(3):850–5.

    Article  PubMed  Google Scholar 

  129. Carr LK, Herschorn S, Birch C, Murphy M, Robert M, Jankowski RJ, Pruchnic R, Wagner D, Chancellor MB. Autologous muscle-derived cells as a therapy for stress urinary incontinence: a randomized, blinded, multi-dose study. J Urol. 2009;181(4):546.

    Article  Google Scholar 

  130. Carr L, Herschorn S, Birch C, Murphy M, Robert M, Jankowski R, Pruchnic R, Wagner D, Chancellor M. Aautologous muscle-derived cells as therapy for stress urinary incontinence: a randomized, dose-ranging trial. J Urol. 2010;183(4):e587–8.

    Article  Google Scholar 

  131. Peters K, Kaufman M, Dmochowski R, Carr L, Herschorn S, Fischer M, Sirls L, Nagaraju P, Biller D, Ward R. 1340 Autologous muscle derived cell therapy for the treatment of female stress urinary incontinence: a multi-center experience. J Urol. 2011;185(4):e535–6.

    Article  Google Scholar 

  132. Carr LK, Robert M, Kultgen PL, Herschorn S, Birch C, Murphy M, Chancellor MB. Autologous muscle derived cell therapy for stress urinary incontinence: a prospective, dose ranging study. J Urol. 2013;189(2):595–601.

    Article  PubMed  Google Scholar 

  133. Jankowski R, Werner S, Snyder S, Chancellor M, Kultgen P, Pruchnic R. Cell therapy for treatment of stress urinary incontinence in women: potential dose effect of autologous muscle-derived cells for urinary sphincter repair (AMDC-USR). Cytotherapy. 2014;16(4):S91.

    Article  Google Scholar 

  134. Stangel‐Wojcikiewicz K, Jarocha D, Piwowar M, Jach R, Uhl T, Basta A, Majka M. Autologous muscle‐derived cells for the treatment of female stress urinary incontinence: a 2‐year follow‐up of a polish investigation. Neurourol Urodyn. 2014;33(3):324–30.

    Article  PubMed  Google Scholar 

  135. Lorenzi B, Pessina F, Lorenzoni P, Urbani S, Vernillo R, Sgaragli G, Gerli R, Mazzanti B, Bosi A, Saccardi R. Treatment of experimental injury of anal sphincters with primary surgical repair and injection of bone marrow-derived mesenchymal stem cells. Dis Colon Rectum. 2008;51(4):411–20.

    Article  PubMed  Google Scholar 

  136. Kang S-B, Lee HN, Lee JY, Park J-S, Lee HS, Lee JY. Sphincter contractility after muscle-derived stem cells autograft into the cryoinjured anal sphincters of rats. Dis Colon Rectum. 2008;51(9):1367–73.

    Article  PubMed  PubMed Central  Google Scholar 

  137. White AB, Keller PW, Acevedo JF, Word RA, Wai CY. Effect of myogenic stem cells on contractile properties of the repaired and unrepaired transected external anal sphincter in an animal model. Obstet Gynecol. 2010;115(4):815–23.

    Article  PubMed  Google Scholar 

  138. Aghaee-Afshar M, Rezazadehkermani M, Asadi A, Malekpour-Afshar R, Shahesmaeili A, Nematollahi-mahani SN. Potential of human umbilical cord matrix and rabbit bone marrow-derived mesenchymal stem cells in repair of surgically incised rabbit external anal sphincter. Dis Colon Rectum. 2009;52(10):1753–61.

    Article  PubMed  Google Scholar 

  139. Kajbafzadeh A-M, Elmi A, Talab SS, Esfahani SA, Tourchi A. Functional external anal sphincter reconstruction for treatment of anal incontinence using muscle progenitor cell auto grafting. Dis Colon Rectum. 2010;53(10):1415–21.

    Article  PubMed  Google Scholar 

  140. Pathi SD, Acevedo JF, Keller PW, Kishore AH, Miller RT, Wai CY, Word RA. Recovery of the injured external anal sphincter after injection of local or intravenous mesenchymal stem cells. Obstet Gynecol. 2012;119(1):134–44.

    Article  CAS  PubMed  Google Scholar 

  141. Salcedo L, Mayorga M, Damaser M, Balog B, Butler R, Penn M, Zutshi M. Mesenchymal stem cells can improve anal pressures after anal sphincter injury. Stem Cell Res. 2013;10(1):95–102.

    Article  PubMed  Google Scholar 

  142. Salcedo L, Penn M, Damaser M, Balog B, Zutshi M. Functional outcome after anal sphincter injury and treatment with mesenchymal stem cells. Stem Cells Transl Med. 2014;3(6):760–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fitzwater JL, Grande KB, Sailors JL, Acevedo JF, Word RA, Wai CY. Effect of myogenic stem cells on the integrity and histomorphology of repaired transected external anal sphincter. Int Urogynecol J. 2015;26(2):251–6.

    Article  PubMed  Google Scholar 

  144. Montoya TI, Acevedo JF, Smith B, Keller PW, Sailors JL, Tang L, Word RA, Wai CY. Myogenic stem cell-laden hydrogel scaffold in wound healing of the disrupted external anal sphincter. Int Urogynecol J. 2015;26(6):893–904.

    Article  PubMed  Google Scholar 

  145. Frudinger A, Kölle D, Schwaiger W, Pfeifer J, Paede J, Halligan S. Muscle-derived cell injection to treat anal incontinence due to obstetric trauma: pilot study with 1 year follow-up. Gut. 2010;59(01):55–61.

    Article  CAS  PubMed  Google Scholar 

  146. Rockwood TH, Church JM, Fleshman JW, Kane RL, Mavrantonis C, Thorson AG, Wexner SD, Bliss D, Lowry AC. Fecal incontinence quality of life scale. Dis Colon Rectum. 2000;43(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  147. Jorge JMN, Wexner SD. Etiology and management of fecal incontinence. Dis Colon Rectum. 1993;36(1):77–97.

    Article  CAS  PubMed  Google Scholar 

  148. Giori A, Tremolada C, Vailati R, Navone S, Marfia G, Caplan A. Recovery of function in anal incontinence after micro-fragmented fat graft (Lipogems®) injection: two years follow up of the first 5 cases. CellR4. 2016;3(2):e1544.

    Google Scholar 

  149. Bianchi F, Maioli M, Leonardi E, Olivi E, Pasquinelli G, Valente S, Mendez AJ, Ricordi C, Raffaini M, Tremolada C. A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplant. 2013;22(11):2063–77.

    Article  PubMed  Google Scholar 

  150. Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, Gualini S, Cavallini C, Fontani V, Ventura C. Radio electric conveyed fields directly reprogram human dermal skin fibroblasts toward cardiac, neuronal, and skeletal muscle-like lineages. Cell Transplant. 2013;22(7):1227–35.

    Article  PubMed  Google Scholar 

  151. Carelli S, Messaggio F, Canazza A, Hebda DM, Caremoli F, Latorre E, Grimoldi MG, Colli M, Bulfamante G, Tremolada C. Characteristics and properties of mesenchymal stem cells derived from micro-fragmented adipose tissue. Cell Transplant. 2014;24(7):1233–52.

    Article  PubMed  Google Scholar 

  152. Tremolada C, Palmieri G, Ricordi C. Adipocyte transplantation and stem cells: plastic surgery meets regenerative medicine. Cell Transplant. 2010;19(10):1217–23.

    Article  PubMed  Google Scholar 

  153. Jiang X-X, Zhang Y, Liu B, Zhang S-X, Wu Y, Yu X-D, Mao N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105(10):4120–6.

    Article  CAS  PubMed  Google Scholar 

  154. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–6.

    Article  PubMed  CAS  Google Scholar 

  155. Maurer MH. Proteomic definitions of mesenchymal stem cells. Stem Cells Int. 2011:704256.

    Google Scholar 

  156. Vaizey C, Kamm M. Injectable bulking agents for treating faecal incontinence. Br J Surg. 2005;92(5):521–7.

    Article  CAS  PubMed  Google Scholar 

  157. Frudinger A, Pfeifer J, Paede J, Kolovetsiou‐Kreiner V, Marksteiner R, Halligan S. Autologous skeletal muscle‐derived cell injection for anal incontinence due to obstetric trauma: a five‐year follow‐up of an initial study of ten patients. Colorectal Dis. 2015;9794–801.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonella Lisi or Antonella Lisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ledda, M., Lisi, A., Giori, A. (2016). Stem Cells. In: Mongardini, M., Giofrè, M. (eds) Management of Fecal Incontinence. Springer, Cham. https://doi.org/10.1007/978-3-319-32226-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32226-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32224-7

  • Online ISBN: 978-3-319-32226-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics