Skip to main content

New Approaches for Hierarchical Image Decomposition, Based on IDP, SVD, PCA and KPCA

  • Chapter
  • First Online:
New Approaches in Intelligent Image Analysis

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 108))

Abstract

The contemporary forms of image representation vary depending on the application. There are well-known mathematical methods for image representation, which comprise: matrices, vectors, determined orthogonal transforms, multi-resolution pyramids, Principal Component Analysis (PCA) and Independent Component Analysis (ICA), Singular Value Decomposition (SVD), wavelet sub-band decompositions, hierarchical tensor transformations, nonlinear decompositions through hierarchical neural networks, polynomial and multiscale hierarchical decompositions, multidimensional tree-like structures, multi-layer perceptual and cognitive models, statistical models, etc. In this chapter are analyzed the basic methods for hierarchical decomposition of grayscale and color images, and of sequences of correlated images of the kind: medical, multispectral, multi-view, etc. Here is also added one expansion and generalization of the ideas of the authors from their previous publications, regarding the possibilities for the development of new, efficient algorithms for hierarchical image decompositions with various purposes. In this chapter are presented and analyzed the following four new approaches for hierarchical image decomposition: the Branched Inverse Difference Pyramid (BIDP), based on the Inverse Difference Pyramid (IDP); the Hierarchical Singular Value Decomposition (HSVD) with tree-like computational structure; the Hierarchical Adaptive Principle Component Analysis (HAPCA) for groups of correlated images; and the Hierarchical Adaptive Kernel Principal Component Analysis (HAKPCA) for color images. In the chapter are given the algorithms, used for the implementation of these decompositions, and their computational complexity is evaluated. Some experimental results, related to selected applications are also given, and various possibilities for the creation of new hybrid algorithms for hierarchical decomposition of multidimensional images are specified. On the basis of the results obtained from the executed analysis, the basic application areas for efficient image processing are specified, such as: reduction of the information surplus; noise filtration; color segmentation; image retrieval; image fusion; dimensionality reduction for objects classification; search enhancement in large scale image databases, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao, R., Kim, D., Hwang, J.: Fast Fourier Transform: Algorithms and Applications. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  2. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, NJ (2008)

    Google Scholar 

  3. Do, M., Vetterli, M.: Contourlets: a directional multiresolution image representation. In: Proceedings of International Conference on Image Processing, 2002, vol. 1, pp. 357−360 (2002)

    Google Scholar 

  4. Kountchev, R., Vl, Todorov, Kountcheva, R.: Linear and non-linear inverse pyramidal image representation: algorithms and applications, Chapter. In: Kountchev, R., Nakamatsu, K. (eds.) Advances in Reasoning-based Image Processing, Analysis and Intelligent Systems, pp. 35–89. Springer, Berlin (2012)

    Chapter  Google Scholar 

  5. Orfanidis, S.: SVD, PCA, KLT, CCA, and all that. In: Optimum Signal Processing, pp. 332−525. Rutgers University (2007)

    Google Scholar 

  6. Ahuja, N.: On approaches to polygonal decomposition for hierarchical image representation. Comput. Vis. Graph. Image Proc. 24, 200−214 (1983)

    Google Scholar 

  7. Tadmor, E., Nezzar, S., Vese, L.: Multiscale hierarchical decomposition of images with applications to deblurring, denoising and segmentation. Commun. Math. Sci. 6, 281–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hidane, M., Lezoray, O., Ta, V., Elmoataz, A.: Nonlocal multiscale hierarchical decomposition on graphs. In: Daniilidis K, Maragos P, Paragios N (eds.) Computer Vision—ECCV 2010, Part IV, pp. 638–650, LNCS 6314. Springer, Berlin (2010)

    Google Scholar 

  9. Wu, Q., Xia, T., Yu, Y.: Hierarchical tensor approximation of multidimensional images. In: IEEE International Conference on Image Processing (ICIP’07), San Antonio, TX, 6, IV-49, IV-52 (2007)

    Google Scholar 

  10. Cherkashyn, V., He, D., Kountchev, R.: Image decomposition on the basis of an inverse pyramid with 3-layer neural networks. J. Commun. Comput. 6(11), 1–9 (2009)

    Google Scholar 

  11. Mach, T.: Eigenvalue algorithms for symmetric hierarchical matrices. Dissertation, Chemnitz University of Technology, March 13, 175p (2012)

    Google Scholar 

  12. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kountchev, R.: New Approaches in Intelligent Image Processing, 322p. WSEAS Press, Athene (2013)

    Google Scholar 

  14. Kountchev, R., Kountcheva, R.: Image representation with reduced spectrum pyramid. In: Tsihrintzis, G., Virvou, M., Howlett, R., Jain, L. (eds.) New Directions in Intelligent Interactive Multimedia, pp. 275−284. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  15. Kountchev, R., Kountcheva, R.: Compression of CT images with modified inverse pyramidal decomposition. In: 12th WSEAS International Conference on Signal Processing, Computational Geometry and Artificial Vision (ISCGAV’12), pp. 74–79, Istanbul, Turkey (2012)

    Google Scholar 

  16. Draganov, I., Kountchev, R., Georgieva, V.: Compression of CT images with branched inverse pyramidal decomposition. In: Iantovics, B., Kountchev, R. (eds.) Advanced Intelligent Computational Technologies and Decision Support Systems, vol. 486, VII, pp. 71–81. Springer (2014)

    Google Scholar 

  17. Kountchev, R., Todorov, V., Kountcheva, R.: New method for adaptive lossless compression of still images based on the histogram statistics. In: Tsihrintzis, G., Virvou, M., Jain, L., Howlett, R. (eds.) Intelligent Interactive Multimedia Systems and Services, Proceedings of the 4th International Conference on Intelligent Interactive Multimedia Systems and Services (KES-IIMSS 2011), pp. 61−70. Springer (2011)

    Google Scholar 

  18. Deprettere, E.: SVD and Signal Processing. Elsevier, New York (1988)

    Google Scholar 

  19. Vaccaro, R.: SVD and Signal Processing II. Elsevier, New York (1991)

    Google Scholar 

  20. Moonen, M., Moor, B.: SVD and Signal Processing III. Elsevier, New York (1995)

    MATH  Google Scholar 

  21. Carlen, E.: Calculus++. In: The Symmetric Eigenvalue Problem. Georgia Tech (2003)

    Google Scholar 

  22. Andrews, H., Patterson, C.: Singular value decompositions and digital image processing. IEEE Trans. Acoust. Speech Signal Process. ASSP-24, 26–53 (1976)

    Google Scholar 

  23. Gerbrands, J.: On the relationships between SVD KLT, and PCA, Pattern Recogn. 14(6), 375–381 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kalman, D.: A singularly valuable decomposition: the SVD of a matrix. Coll. Math. J 27(1), 2–23 (1996)

    Article  MathSciNet  Google Scholar 

  25. Rehna, V., Jeyakumar, M.: Singular value decomposition based image coding for achieving additional compression to JPEG images. Int. J. Image Process. Vis. Sci. 1(2), 56–61 (2012)

    Google Scholar 

  26. Sadek, R.: SVD based image processing applications: state of the art, contributions and research challenges. Int. J. Adv. Comput. Sci. Appl. 3(7), 26–34 (2012)

    Google Scholar 

  27. Householder, A.: The Theory of Matrices in Numerical Analysis. Dover, New York (1975)

    MATH  Google Scholar 

  28. Diamantaras, K., Kung, S.: Principal Component Neural Networks. Wiley, New York (1996)

    MATH  Google Scholar 

  29. Levy, A., Lindenbaum, M.: Sequential Karhunen-Loeve basis extraction and its application to images. IEEE Trans. Image Process. 9(8), 1371–1374 (2000)

    Article  MATH  Google Scholar 

  30. Drinea, E., Drineas, P., Huggins, P.: A randomized singular value decomposition algorithm for image processing applications. In: Manolopoulos, Y., Evripidou, S. (eds.) Proceedings of the 8th Panhellenic Conference on Informatics, pp. 278–288, Nicosia, Cyprus (2001)

    Google Scholar 

  31. Holmes, M., Gray, A., Isbell, C.: QUIC-SVD: fast SVD using cosine trees. In: Proceedings of NIPS, pp. 673–680 (2008)

    Google Scholar 

  32. Foster, B., Mahadevan, S., Wang, R.: A GPU-based approximate SVD algorithm. In: 9th International Conference on Parallel Processing and Applied Mathematics, 2011, LNCS 7203, pp. 569–578 (2012)

    Google Scholar 

  33. Yoshikawa, M., Gong, Y., Ashino, R., Vaillancourt, R.: Case study on SVD multiresolution analysis, CRM-3179, pp. 1–18 (2005)

    Google Scholar 

  34. Waldemar, P., Ramstad, T.: Hybrid KLT-SVD image compression. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2713–2716. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  35. Aharon, M., Elad, M., Bruckstein, A.: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  36. Singh, S., Kumar, S.: Singular value decomposition based sub-band decomposition and multi-resolution (SVD-SBD-MRR) representation of digital colour images. Pertanika J Sci. Technol. (JST) 19(2), 229–235 (2011)

    Google Scholar 

  37. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kountchev, R., Kountcheva, R.: Hierarchical SVD-based image decomposition with tree structure. Int. J. Reasoning-Based Intell. Syst. (IJRIS) 7(1/2), 114–129 (2015)

    Article  Google Scholar 

  39. Kountchev, R., Nakamatsu, K.: One approach for grayscale image decorrelation with adaptive multi-level 2D KLT. In: Graña, M., Toro, C., Posada, J., Howlett, R., Jain, L. (eds.) Advances in Knowledge-Based and Intelligent Information and Engineering Systems, pp. 1303–1312. IOS Press (2012)

    Google Scholar 

  40. Fieguth, P.: Statistical image processing and multidimensional modeling. Springer, Science+Business Media (2011)

    Google Scholar 

  41. Reed, T.: Digital Image Sequence Processing, Compression, and Analysis. CRC Press (2004)

    Google Scholar 

  42. Shi, Y., Sun, H.: Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and Standards, 2nd edn. CRC Press, Taylor & Francis Group, LLC (2008)

    Google Scholar 

  43. Mukhopadhyay, J.: Image and Video Processing in the Compressed Domain. CRC Press (2011)

    Google Scholar 

  44. Hyvarinen, A., Hurri, J., Hoyer, P.: Natural Image Statistics, A Probabilistic Approach to Early Computational Vision. Springer (2009)

    Google Scholar 

  45. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer-Verlag, NY (2002)

    MATH  Google Scholar 

  46. Dony, R.: Karhunen-Loeve Transform. In: Rao, K., Yip, P. (eds.) The Transform and Data Compression Handbook. CRC Press, Boca Raton (2001)

    Google Scholar 

  47. Fleury, M., Dowton, A., Clark, A.: Karhunen-Loeve Transform—Image Processing. University of Essex, Wivenhoe (1997)

    Google Scholar 

  48. Miranda, A., Borgne, Y., Bontempi, G.: New routes from minimal approximation error to principal components, pp. 1−14. Kluwer Academic Publishers (2007)

    Google Scholar 

  49. Landqvist, R., Mohammed, A.: Comparative performance analysis of three algorithms for principal component analysis. Radioengineering 15(4), 84–90 (2006)

    Google Scholar 

  50. Tipping, M., Bishop, C.: Probabilistic principal component analysis. J. Roy. Stat. Soc. B, 61(3), 611−622 (1999)

    Google Scholar 

  51. Liwicki, S., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Euler principal component analysis. Int. J. Comput. Vis. 101(3), 498–518 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ujwala, P., Uma, M.: Image fusion using hierarchical PCA. In: International Conference on Image Information Processing (ICIIP’11). pp. 1–6 (2011)

    Google Scholar 

  53. Abadpour, A., Kasaei, S.: Color PCA eigen images and their application to compression and watermarking. Image Video Comput. 26, 878–890 (2008)

    Article  Google Scholar 

  54. Chadha, A., Satam, N., Sood, R., Bade, D.: Image steganography using Karhunen-Loève transform and least bit substitution. Int. J. Comput. Appl. 79(9), 31–37 (2013)

    Google Scholar 

  55. Naik, G., Kumar, D.: An overview of independent component analysis and its applications. Informatica 35, 63–81 (2011)

    MATH  Google Scholar 

  56. Press, W., Teukolsky, S., Vetterling, W.: Numerical Recipes in C, The Art of Scientific Computing, 2nd edn. Cambridge University Press (2001)

    Google Scholar 

  57. Erdogmus, D., Rao, Y., Peddaneni, H., Hegde, A., Principe, J.: Recursive PCA using eigenvector matrix perturbation. EURASIP J. Adv. Signal Process. 13, 2034–2041 (2004)

    Article  Google Scholar 

  58. Hanafi, M., Kohler, A., Qannari, E.: Shedding new light on hierarchical principal component analysis. J. Chemom. 24(11–12), 703–709 (2010)

    Article  Google Scholar 

  59. Amar, A., Leshem, A., Gastpar, M.: Recursive implementation of the distributed Karhunen-Loève transform. IEEE Trans. Signal Process. 58(10), 5320–5330 (2010)

    Article  MathSciNet  Google Scholar 

  60. Thirumalai, V.: Distributed compressed representation of correlated image sets. Thesis no 5264, Lausanne, EPFL (2012)

    Google Scholar 

  61. Saghri, J., Schroeder, S., Tescher, A.: An adaptive two-stage KLT scheme for spectral decorrelation in hyperspectral bandwidth compression. SPIE Proc. 7443, 72–84 (2009)

    Google Scholar 

  62. Wongsawat, Y., Oraintara, S., Rao, K.: Integer sub-optimal Karhunen Loeve transform for multi-channel lossless EEG Compression. In: 14th European Signal Processing Conference (EUSIPCO’06), Florence, Italy (2006)

    Google Scholar 

  63. Blanes, I., Sagristà, J., Marcellin, M., Rapesta, J.: Divide-and-conquer strategies for hyperspectral image processing. IEEE Signal Process. Mag. 29(3), 71–81 (2012)

    Article  Google Scholar 

  64. Blanes, I., Sagristà, J.: Pairwise orthogonal transform for spectral image coding. IEEE Trans. Geosci. Remote Sens. 49(3), 961–972 (2011)

    Google Scholar 

  65. Ma, Z.: Sparse principal component analysis and iterative thresholding. Ann. Stat. 41(2), 772–801 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. Jain, A.: A fast Karhunen-Loeve transform for a class of random processes. IEEE Trans. Commun. COM-24, 1023–1029 (1976)

    Google Scholar 

  67. Rokhlin, V., Szlam, A., Tygert, M.: A randomized algorithm for principal component analysis. SIAM J. Matrix Anal. Appl. 31, 1100–1124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Kambhatla, N., Haykin, S., Dony, R.: Image compression using KLT, wavelets and an adaptive mixture of principal components model. J. VLSI Signal Process. 18, 287–296 (1998)

    Article  Google Scholar 

  69. Bita, I., Barret, M., Pham, D.: On optimal transforms in lossy compression of multi-component images with JPEG2000. Sig. Process. 90(3), 759–773 (2010)

    Article  MATH  Google Scholar 

  70. Kountchev, R., Kountcheva, R.: PCA-based adaptive hierarchical transform for correlated image groups. In Proceedings of the International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS’13), pp. 323−332. IEEE, Serbia (2013)

    Google Scholar 

  71. Kountchev, R.: Applications of the hierarchical adaptive PCA for processing of medical CT images. Egypt. Comput. Sci. J. 37(3), 1–25 (2013)

    Google Scholar 

  72. Kountchev, R., Kountcheva, R.: Decorrelation of multispectral images, based on hierarchical adaptive PCA. Int. J. WSEAS Trans. Signal Process. 3(9), 120–137 (2013)

    Google Scholar 

  73. Kountchev, R., Kountcheva, R.: Hierarchical adaptive KL-based transform: algorithms and applications. In: Favorskaya, M., Jain, L. (eds.) Computer Vision in Advanced Control Systems: Mathematical Theory, pp. 91−136. Springer, Heidelberg (2015)

    Google Scholar 

  74. Arora, S., Barak, B.: Computational complexity: A modern approach. Cambridge University Press (2009)

    Google Scholar 

  75. Jie, X., Fei, S.: Natural color image segmentation. In: Proceedings of IEEE IC on Image Processing (ICIP’03), pp. 973–976, Barcelona, Spain (2003)

    Google Scholar 

  76. Navon, E., Miller, O., Averabuch, A.: Color image segmentation based on adaptive local thresholds. Image Vis. Comput. 23, 69–85 (2005)

    Article  Google Scholar 

  77. Deshmukh, K., Shinde, G.: An adaptive color image segmentation. Electron. Lett. Comput. Vis. Image Anal. 5(4), 12–23 (2005)

    Google Scholar 

  78. Yu, Z., Wong, H., Wen, G.: A modified support vector machine and its application to image segmentation. Image Vis. Comput. 29, 29–40 (2011)

    Article  Google Scholar 

  79. Wang, X., Wang, T., Bu, J.: Color image segmentation using pixel wise support vector machine classification. Pattern Recogn. 44, 777–787 (2011)

    Article  MATH  Google Scholar 

  80. Bhoyar, K., Kakde, O.: Skin color detection model using neural networks and its performance evaluation. J. Comput. Sci. 6(9), 963–968 (2010)

    Article  Google Scholar 

  81. Stern, H., Efros, B.: Adaptive color space switching for face tracking in multi-colored lighting environments. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, pp. 249–255 (2002)

    Google Scholar 

  82. Kakumanu, P., Makrogiannis, S., Bourbakis, N.: A survey of skin-color modeling and detection methods. Pattern Recogn. 40, 1106–1122 (2007)

    Article  MATH  Google Scholar 

  83. Ionita, M., Corcoran, P.: Benefits of using decorrelated color information for face segmentation/tracking. Adv. Optical Technol. 2008(583687) (2008)

    Google Scholar 

  84. Hassanpour, R., Shahbahrami, A., Wong, S.: Adaptive Gaussian mixture model for skin color segmentation. World Acad. Sci. Eng. Technol. 41, 1–6 (2008)

    Google Scholar 

  85. Hikal, N., Kountchev, R.: Skin color segmentation using adaptive PCA and modified elliptic boundary model. In: International Proceedings of the IEEE International Conference on Advanced Computer Science and Information Systems (IEEE ICACSIS’11), pp. 407–412, Jakarta, Universitas Indonesia (2011)

    Google Scholar 

  86. Abadpour, A., Kasaei, S.: Principal color and its application to color image segmentation. Scientia Iranica 15(2), 238–245 (2008)

    Google Scholar 

  87. Kountchev, R., Kountcheva, R.: Image color space transform with enhanced KLT. In: Nakamatsu, K., Wren, G., Jain, L., Howlett, R. (eds.) New Advances in Intelligent Decision Technologies, pp. 171−182. Springer-Verlag (2009)

    Google Scholar 

  88. Gunter, S., Schraudolph, N., Vishwanathan, S.: Fast iterative kernel principal component analysis. J. Mach. Learn. Res. 8, 1893–1918 (2007)

    MathSciNet  MATH  Google Scholar 

  89. Scholkopf, B., Smola, A., Muller, K.: Kernel principal component analysis. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods—Support Vector Learning, pp. 327–352. MIT Press, Cambridge, MA (1999)

    Google Scholar 

  90. Lee, J., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer (2007)

    Google Scholar 

  91. Kountchev, R., Hikal, N., Kountcheva, R.: A new approach for color image segmentation with hierarchical adaptive kernel PCA. In: 18th International Conference on Circuits, Systems, Communications and Computers (CSCC’14), Proceedings of Advances in Information Science and Applications, pp. 38–43, Santorini Island, I (2014)

    Google Scholar 

  92. Kountchev, R., Milanova, M., Todorov, V., Kountcheva, R.: Image watermarking based on pyramid decomposition with CH transform, In: Chan, Y., Talburt, J., Talley, T. (eds.) Data Engineering: Mining, Information, and Intelligence, pp. 353–387. Springer (2010)

    Google Scholar 

  93. Draganov, I.: Inverse pyramid decomposition of wavelet spectrum for image compression. Int. J. Reasoning-based Intell. Syst. (IJRIS) 6(1/2), 19–23 (2014)

    Article  Google Scholar 

  94. Martino, F., Loia, V., Sessa, S.: A fuzzy hybrid method for image decomposition. Int. J. Reasoning-based Intell. Syst. (IJRIS) 1(1/2), 77–84 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roumen Kountchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kountchev, R., Kountcheva, R. (2016). New Approaches for Hierarchical Image Decomposition, Based on IDP, SVD, PCA and KPCA. In: Kountchev, R., Nakamatsu, K. (eds) New Approaches in Intelligent Image Analysis. Intelligent Systems Reference Library, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-319-32192-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32192-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32190-5

  • Online ISBN: 978-3-319-32192-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics