Skip to main content

Using Biophysics to Monitor the Essential Protonmotive Force in Bacteria

  • Chapter
  • First Online:
Biophysics of Infection

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 915))

Abstract

Protonmotive force is an essential biological energy format in all levels of cells. Protonmotive force comprises electrical and chemical potential difference across biological membrane. In bacteria, protonmotive force couples to metabolism and ATP production. Moreover, protonmotive force directly provides driving energy of bacterial flagellar motor that is critical for bacterial motility and infection. Due to the small size of bacterial cells, there were limited experimental tools to measure protonmotive force in bacteria. Recent developments of optical membrane potential and intracellular pH indicators provide valuable information on bacterial studies. These new biophysical techniques allow us to monitor the protonmotive force even in single bacterial cell level that shed the light of next generation single-cell physiological experiments towards the understanding of bacterial infection process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker M, Berry RM (2009) An introduction to the physics of the bacterial flagellar motor: a nanoscale rotary electric motor. Contemp Phys 50:617–632

    Article  Google Scholar 

  • Blair KM et al (2008) A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320:1636

    Article  CAS  PubMed  Google Scholar 

  • Bradley J et al (2009) Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. J Neuronsci 29:9197–9209

    Article  CAS  Google Scholar 

  • Gabel C, Berg HC (2003) The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc Natl Acad Sci USA 100:8748–8751

    Google Scholar 

  • Kashket ER (1985) The proton motive force in bacteria: a critical assessment of methods. Ann Rev Microbiol 39:219–42

    Google Scholar 

  • Kojima M et al. (2007) The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species. Mol Microbiol 64:57–67

    Google Scholar 

  • Kurre R et al. (2013) Speed switching of Gonococcal surface motility correlates with proton motive force. PLoS ONE 8(6):e67718

    Google Scholar 

  • Lo CJ, Leake MC, Berry RM (2006) Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophys J 90:357–365

    Article  CAS  PubMed  Google Scholar 

  • Lo CJ, Leake MC, Pilizota T, Berry RM (2007) Non-equivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. Biophys J 93:294–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo CJ, Sowa Y, Pilizota T, Berry RM (2013) The mechanism and kinetics of a sodium-driven bacterial flagellar motor. Proc Natl Acad Sci USA 110:2544–2551

    Article  Google Scholar 

  • Martines K II et al (2012) Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy. App Env Microbiol 78:3706

    Article  Google Scholar 

  • Miesenböck G et al. (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Bio Rev 41:445–501; reprinted (2011) BBA-Bioenerg 1807:1507–1538

    Google Scholar 

  • Morimoto Y, Kojima S, Namba K and Minamino T (2011) M153R mutation in a pH-sensitive green fluorescent protein stabilizes its fusion proteins. PLoS ONE 6(5): e19598

    Google Scholar 

  • Okuno D, Iino R, Noji H (2011) Rotation and structure of FoF1-ATP synthase. J Biochem 149(6):655–664

    Article  CAS  PubMed  Google Scholar 

  • Ottemann KM, Lowenthal AC (2002) Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect Immun 70:1984–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul K et al (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a ‘‘backstop brake’’ mechanism. Mol Cell 38:128–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid S, Leake MC, Chandler JH, Lo CJ, Armitage JP, Berry RM (2006) The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci USA 103:8066–8071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shultis DD, Purdy MD, Banchs CN, Wiener MC (2006) Outer membrane active transport: structure of the BtuB:TonB complex. Science 312(5778):1396–1399

    Article  CAS  PubMed  Google Scholar 

  • Sowa Y et al. (2003) Torque–speed relationship of the Na-driven Flagellar motor of Vibrio alginolyticus. J Mol Biol 327:1043–1051

    Google Scholar 

  • Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41(2):103–132

    Article  CAS  PubMed  Google Scholar 

  • Stingl K et al. (2002) Energetics of Helicobacter pylori and its implications for the mechanism of urease-dependent acid tolerance at pH 1. J Bacteriol 184:3053–3060

    Google Scholar 

  • Terasawa S et al (2011) Coordinated reversal of flagellar motors on a single Escherichia coli cell. Biophys J 100:2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodford CR et al (2015) Improved PeT molecules for optical sensing voltage in neurons. JACS 137:1817–1824

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. Teuta Pilizota and Dr. Bai Fan for their assistance of single-cell protonmotive force measurement. The work in my lab was supported by the Ministry of Science and Technology of the Republic of China under contract No. MOST-103-2112-M-008-013-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Jung Lo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, MT., Lo, CJ. (2016). Using Biophysics to Monitor the Essential Protonmotive Force in Bacteria. In: Leake, M. (eds) Biophysics of Infection. Advances in Experimental Medicine and Biology, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-319-32189-9_6

Download citation

Publish with us

Policies and ethics