Skip to main content

How Biophysics May Help Us Understand the Flagellar Motor of Bacteria Which Cause Infections

  • Chapter
  • First Online:
Biophysics of Infection

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 915))

Abstract

Motor proteins are molecules which convert chemical energy to mechanical work and are responsible for motility across all levels: for transport within a cell, for the motion of an individual cell in its surroundings, and for movement in multicellular aggregates, such as muscles. The bacterial flagellar motor is one of the canonical examples of a molecular complex made from several motor proteins, which self-assembles on demand and provides the locomotive force for bacteria. This locomotion provides a key aspect of bacteria’s prevalence. Here, we outline the biophysics behind the assembly, the energetics, the switching and the rotation of this remarkable nanoscale electric motor that is Nature’s first wheel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler J (1966) Chemotaxis in bacteria. Science 153:708–716

    Article  CAS  PubMed  Google Scholar 

  • Asai Y, Yakushi T, Kawagishi I, Homma M (2003) Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol 327:453–463

    Article  CAS  PubMed  Google Scholar 

  • Auwaerter PG, Aucott J, Dumler JS (2004) Lyme borreliosis (Lyme disease): molecular and cellular pathobiology and prospects for prevention, diagnosis and treatment. ERM 6. doi:10.1017/S1462399404007276

    Google Scholar 

  • Bai F et al (2010) Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327:685–689

    Article  CAS  PubMed  Google Scholar 

  • Baker MAB, Berry RM (2009) An introduction to the physics of the bacterial flagellar motor. Contemp Phys 50:617

    Article  Google Scholar 

  • Beeby M, Ribardo DA, Brennan CA, Ruby EG, Jensen GJ, Hendrixson DR (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. PNAS. doi:10.1073/pnas.1518952113

    Google Scholar 

  • Berg H (2003) The rotary motor of bacterial flagella. Ann Rev

    Google Scholar 

  • Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV (2014) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51

    Article  PubMed  Google Scholar 

  • Bray D (2002) Bacterial chemotaxis and the question of gain. PNAS 99:7–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S et al (2011) Structural diversity of bacterial flagellar motors. EMBO J 30:2972–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Berg HC (2000) Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys J 78: 1036–1041

    Google Scholar 

  • Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science (New York, N.Y.) 287:1652–1655

    Article  CAS  Google Scholar 

  • Coburn B, Grassl GA, Finlay BB (2006) Salmonella, the host and disease: a brief review. Immunol Cell Biol 85:112–118

    Article  PubMed  Google Scholar 

  • Delalez N, Armitage JP (2009) Parts exchange: tuning the flagellar motor to fit the conditions. Mol Microbiol 71:807–810

    Article  CAS  PubMed  Google Scholar 

  • Delalez NJ et al (2010) Signal-dependent turnover of the bacterial flagellar switch protein FliM. PNAS 107:11347–11351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delalez NJ, Berry RM, Armitage JP (2014) Stoichiometry and turnover of the bacterial flagellar switch protein FliN. MBio 5:e01216–14–e01216–14

    Google Scholar 

  • DeRosier D (2006) Bacterial flagellum: visualizing the complete machine in situ. Curr Biol 16:R928–R930–R928–R930

    Google Scholar 

  • Erhardt M, Namba K, Hughes KT (2010) Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol 2:a000299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuoka H, Sagawa T, Inoue Y, Takahashi H, Ishijima A (2014) Direct imaging of intracellular signaling components that regulate bacterial chemotaxis. Sci Signal 7:ra32

    Google Scholar 

  • Lee LK, Ginsburg MA, Crovace C, Donohoe M, Stock D (2010) Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466:996–1000

    Google Scholar 

  • Lele PP, Branch RW, Nathan VSW, Berg HC (2012) Mechanism for adaptive remodeling of the bacterial flagellar switch

    Google Scholar 

  • Lele PP, Hosu BG, Berg HC (2013) Dynamics of mechanosensing in the bacterial flagellar motor. PNAS 110:11839–11844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loquet A et al. (2012) Atomic model of the type III secretion system needle. Nature 486:276–279

    Google Scholar 

  • Olia AS, Prevelige PE, Johnson JE, Cingolani G (2011) Three-dimensional structure of a viral genome-delivery portal vertex. Nat Struct Mol Biol 18:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell E (1977) Life at low Reynolds number. Am. J, Phys

    Google Scholar 

  • Sourjik V (2002) Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc Natl Acad Sci USA 99:12669–12674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132

    Article  CAS  PubMed  Google Scholar 

  • Steere AC, Hardin JA, Malawista SE (1977) Erythema chronicum migrans and Lyme arthritis: cryoimmunoglobulins and clinical activity of skin and joints. Science 196:1121–1122

    Article  CAS  PubMed  Google Scholar 

  • Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  CAS  PubMed  Google Scholar 

  • Tipping MJ, Delalez NJ, Lim R, Berry RM, Armitage JP (2013) Load-dependent assembly of the bacterial flagellar motor. MBio 4:e00551–13–e00551–13

    Google Scholar 

  • Togashi F, Yamaguchi S, Kihara M, Aizawa SI, Macnab RM (1997) An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB. J Bacteriol 179:2994–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toker AS, Macnab RM (1997) Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY1. J Mol Biol 273:623–634

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Yuan J, Berg HC (2014) Switching dynamics of the bacterial flagellar motor near zero load. PNAS 111:15752–15755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue R, Ma Q, Baker MAB, Bai F (2015) A delicate nanoscale motor made by nature-the bacterial flagellar motor. Adv Sci n/a–n/a

    Google Scholar 

  • Yorimitsu T, Homma M (2001) Na+-driven flagellar motor of Vibrio. BBA-Bioenerg

    Google Scholar 

  • Yuan J, Branch RW, Hosu BG, Berg HC (2012) Adaptation at the output of the chemotaxis signalling pathway. Nature 484:233–236

    Google Scholar 

  • Yuan J, Fahrner KA, Berg HC (2009) Switching of the bacterial flagellar motor near zero load. J Mol Biol 390:394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Norris SJ, Liu J (2014) Molecular architecture of the bacterial flagellar motor in cells. Biochemistry 53:4323–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. B. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baker, M.A.B. (2016). How Biophysics May Help Us Understand the Flagellar Motor of Bacteria Which Cause Infections. In: Leake, M. (eds) Biophysics of Infection. Advances in Experimental Medicine and Biology, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-319-32189-9_14

Download citation

Publish with us

Policies and ethics