Skip to main content

Reconfigurable Robot Manipulators: Adaptation, Control, and MEMS Applications

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Reconfigurable robotic systems offer adaptable hardware which can modify its configuration based on the objectives to be accomplished. They consist of multiple individual modules. These modules, when combined, allow efficient and feasible reconfiguration. However, control of reconfigurable robotic manipulators is particularly challenging because of the inherent nonlinearity, unknown parameters, and uncertainties and variations in the system dynamics. The uncertainties and variations are mainly due to setup reconfigurations, friction and varying payloads, and are typically addressed using adaptive control. The purpose of this chapter is to present a systematic review of key control schemes for reconfigurable robotic systems, highlighting their benefits and disadvantages. We start with an introduction to the state of the art of reconfigurable robots and their applications. We also review the application of these systems at micro-scale. Then, we review control architectures for such systems, including linear, adaptive, and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott JJ, Nagy Z, Beyeler F, Nelson BJ (2007) Robotics in the small, part I: microrobotics. IEEE Robot Autom Mag 14(2):92–103

    Article  Google Scholar 

  2. Ahmadzadeh H, Masehian E, Asadpour M (2015) Modular robotic systems: characteristics and applications. J Intell Robot Syst 81(3):317–357

    MATH  Google Scholar 

  3. Ambrose RO (1991) Design, construction and demonstration of modular, reconfigurable robots. Ph.D. thesis, University of Texas at Austin

    Google Scholar 

  4. Armstrong B, Khatib O, Burdick J (1986) The explicit dynamic model and inertial parameters of the Puma 560 arm. In: IEEE international conference robotics and automation, vol 1, pp 510–518

    Google Scholar 

  5. Asano H, Qiu ZJ, Zhou LB, Ojima H, Shimizu J, Ishikawa T, Edal H (2007) Path control scheme for vision guided micro manipulation system. Towards Synth Micro-Nano-Syst 2007(5):321–322

    Article  Google Scholar 

  6. Astrom KJ (1983) Theory and applications of adaptive control-A survey. Automatica 19(5):471–486

    Article  Google Scholar 

  7. Basha MA, Dechev N, Safavi-Naeini S, Chaudhuri SK (2007) Improved design of large 3-D micromirrors for microassembly into an optical MEMS cross-connect. Optomechatronic micro/nano devices and components III 2007, vol 6717, pp 71701–71701

    Google Scholar 

  8. Behkam B, Sitti M (2007) Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett 90, 023902

    Article  Google Scholar 

  9. Bergeles C, Kratochvil BE, Nelson BJ (2012) Visually serving magnetic intraocular microdevices. IEEE Trans Robot 28(4):798–809

    Article  Google Scholar 

  10. Beyeler F, Neild A, Oberti S, Bell DJ, Sun Y, Dual J, Nelson BJ (2007) Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J Microelectromech Syst 16(1):7–15

    Article  Google Scholar 

  11. Bi ZM, Lang SYT (2005) General modular robot architecture and configuration design. In: IEEE international conference on mechatronics and automation, Niagara Falls, pp 268–273

    Google Scholar 

  12. Biglarbegian M, Melek W, Mendel JM (2011) Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments. IEEE Trans Ind Electron 58(4):1371–1384

    Article  Google Scholar 

  13. Bilen H (2008) Novel estimation and control techniques in micromanioulation using vision and force feedback. MASc thesis

    Google Scholar 

  14. Bouchebout S, Bolopion A, Abrahamians J-O, Regnier S (2012) An overview of multiple DoF magnetic actuated micro-robots. J Micro-Nano Mechatron 7(4):97–113

    Article  Google Scholar 

  15. Brunete A, Hernando M, Gambao E (2005) Modular multi-configurable architecture for low diameter pipe inspection microrobots. In: IEEE international conference on robotics and automation, Barcelona, pp 490–495

    Google Scholar 

  16. Bryngelson R, Tosunoglu S (1994) On the design of a seven-axis modular robot. In: International conference on industrial electronics society (IECON), pp 1501–1506

    Google Scholar 

  17. Carbonari L, Callegari M, Palmieri G, Palpacelli MC (2014) A new class of reconfigurable parallel kinematic machines. Mech Mach Theory 79:173–183

    Article  Google Scholar 

  18. Cavalcanti A, Shirinzadeh B, Freitas RA, Hogg T (2007) Nanorobot architecture for medical target identification. Nanotechnology 19(1), 015103

    Article  Google Scholar 

  19. Chen I-M (1994) Theory and applications of modular reconfigurable robotic system. Ph.D. thesis, California Institute of Technology

    Google Scholar 

  20. Chen I-M (2001) Rapid response manufacturing through a rapidly reconfigurable robotic workcell. Robot Comput Integr Manuf 17:199–213

    Article  Google Scholar 

  21. Chen I-M, Yang G (1996) Configuration independent kinematics for modular robots. In: IEEE international conference robotics and automation, Minneapolis, MN, pp 1440–1445

    Chapter  Google Scholar 

  22. Chen W, Yang G, Ho EHL, Chen I-M (2003) Interactive-motion control of modular reconfigurable manipulators. In: International conference on intelligent robots and systems, Las Vegas, Nevada

    Google Scholar 

  23. Chen I-M, Yang G, Yeo S-H (2006) Automatic modeling for modular reconfigurable robotic systems, theory and practice, industrial-robotics-theory-modeling-control, Germany, p 964. ISBN 3-86611-285-8

    Google Scholar 

  24. Choi J-K, Omata T, Mori O (2004) Self-reconfigurable planar parallel robot. In: IEEE/RSJ international conference on intelligent robots and systems, Sendai, pp 2654–2660

    Google Scholar 

  25. Christensen DJ, Schultz UP, Stoy K (2013) A distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robots. Robot Auton Syst 61(9):1021–1035

    Article  Google Scholar 

  26. Chung WK, Han J, Youm Y, Kim S (1997) Task based design of modular robot manipulator using efficient genetic algorithm. In: IEEE international conference on robotics and automation, pp 507–512

    Google Scholar 

  27. Cohen R, Lipton MG, Dai MQ, Benhabib B (1992) Conceptual design of a modular robot. ASME J Mech Des 114:117–125

    Article  Google Scholar 

  28. Coppola G, Zhang D, Liu K (2013) A 6-DOF reconfigurable hybrid parallel manipulator. Robot Comput Integr Manuf 30(2014):99–106

    Article  Google Scholar 

  29. Craig JJ, Hsu P, Sastry SS (1986) Adaptive control of mechanical manipulators. In: IEEE international conference on robotics and automation, vol 3, pp 190–195

    Google Scholar 

  30. Dash AK, Chen I-M, Yeo SH, Yang G (2005) Task-oriented configuration design for reconfigurable parallel manipulator systems. Int J Comput Integr Manuf 18(7):615–634

    Article  MathSciNet  Google Scholar 

  31. Diller E, Pawashe C, Floyd S, Sitti M (2011) Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int J Robot Res, 0278364911416140

    Google Scholar 

  32. Diller E, Floyd S, Pawashe C, Sitti M (2012) Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot 28(1):172–182

    Article  Google Scholar 

  33. Diller E, Zhang N, Sitti M (2013) Modular micro-robotic assembly through magnetic actuation and thermal bonding. J Micro-Bio Robot 8:121–131. doi:10.1007/s12213-013-0071-7

    Article  Google Scholar 

  34. Donald B, Levey C, McGray C, Paprotny I, Rus D (2006) An untethered, electrostatic, globally controllable MEMS micro-robot. J Microelectromech Syst 15:1–15

    Article  Google Scholar 

  35. Dong B, Li Y (2013) Decentralized reinforcement learning robust optimal tracking control for time varying constrained reconcilable modular robot based on ACI and function. Prob Eng 115(3):472–482

    Google Scholar 

  36. Duff DG, Yim M, Roufas K (2001) Evolution of polybot: a modular reconfigurable robot. In: Proceedings of the harmonic drive international symposium, Nagano

    Google Scholar 

  37. Ergeneman O, Dogangil G, Kummer MP, Abbott JJ, Nazeeruddin MK, Nelson BJ (2008) IEEE Sens J 8:20–22

    Article  Google Scholar 

  38. Fisher R, Podhorodeski RP (2004) Design of a reconfigurable planar parallel manipulator. J Robot Syst 21(12):665–675

    Article  MATH  Google Scholar 

  39. Freitas RA (2010) The future of nanomedicine. Futurist 44(1):21–22

    Google Scholar 

  40. Fukuda T, Kawauchi Y (1990) Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator. In: IEEE conference on robotics and automation, pp 662–667

    Google Scholar 

  41. Fukuda T, Nakagawa S (1988) Approach to dynamically reconfigurable robotic system. In: IEEE international conference on robotics and automation (ICRA), pp 1581–1586

    Google Scholar 

  42. Fukuda T, Nakagawa S, Kawauchi Y, Buss M (1988) Self organizing robots based on cell structures-CEBOT. In: IEEE international workshop on intelligent robots, pp 145–150

    Google Scholar 

  43. Gao Z, Zhang D, Ge Y (2010) Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches. Robot Comput Integr Manuf 26(2):180–189

    Article  Google Scholar 

  44. Gauthier M, Piat E (2006) Control of a particular micro-macro positioning system applied to cell micromanipulation. IEEE Trans Autom Sci Eng 3(3):264–271

    Article  Google Scholar 

  45. Gavel DT, Siljak DD (1989) Decentralized adaptive control: structural conditions for stability. IEEE Trans Autom Control 34(4):413–426

    Article  MathSciNet  MATH  Google Scholar 

  46. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243–2245

    Article  Google Scholar 

  47. Gilpin K, Kotay K, Rus D (2007) Miche Modular shape formation by self-disassembly. In: Proceedings of the 2007 IEEE international conference on robotics and automation (ICRA), Rome, pp 2241–2247

    Google Scholar 

  48. Gorman JJ, Dagalakis NG, Boone BG (2004) Multi-loop control of a nanopositioning mechanism for ultra-precision beam steering. Free-space laser communication and active laser illumination, vol 5160. SPIE, Bellingham, pp 170–181

    Google Scholar 

  49. Green P et al (1995) Demonstration of three-dimensional microstructure self-assembly. J Microelectoromech Syst 4-4:170–176

    Article  Google Scholar 

  50. Hensinger DM, Johnston GA, Hinman-Sweeney EM, Feddema J, Eskridge S (2002) Self-reconfigurable robots. Sandia National Laboratories

    Book  Google Scholar 

  51. Hosokawa K et al (1994) Dynamics of self-assembling systems: analogy with chemical kinetics. Artif Life 1(4):413–427

    Article  Google Scholar 

  52. Hsu SH, Fu LC (2006) A fully adaptive decentralized control of robot manipulators. Automatica 42(10):1761–1767

    Article  MATH  Google Scholar 

  53. Hsu P, Bodson M, Sastry S, Paden B (1987) Adaptive identification and control for manipulators without using joint accelerations. In: IEEE international conference on robotics and automation, vol 4, pp 1210–1215

    Google Scholar 

  54. Hui R, Kircanski N, Goldenberg A, Zhou C, Kuzan P, Wiercienski J, Gershon D, Sinha P (1993) Design of the iris facility-a modular, reconfigurable and expandable robot test bed. In: IEEE international conference on robotics and automation (ICRA), pp 155–160

    Google Scholar 

  55. Hun Q, Xu L, Zhang A (2012) Adaptive backstepping trajectory tracking control of robot manipulator. J Frankl Inst 349:1087–1105

    Article  MathSciNet  MATH  Google Scholar 

  56. Hunter IW, Jones LA, Sagar MA, Lafontaine SR, Hunter PJ (1995) Ophthalmic microsurgical robot and associated virtual environment. Comput Biol Med 25(2):173–177

    Article  Google Scholar 

  57. Ioannou PA (1986) Decentralized adaptive control of interconnected systems. IEEE Trans Autom Control 31(4):291–298

    Article  MathSciNet  MATH  Google Scholar 

  58. Ioannou P, Fidan B (2006) Adaptive control tutorial. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  59. Ishiyama K, Arai K, Sendoh M, Yamazaki A (2000) Spiral-type micro-machine for medical applications. In: Proceedings of the international symposium on micromechatronics and human science (MHS), Nagoya, 22–25 October 2000, pp 65–69

    Google Scholar 

  60. Jantapremjit P, Austin D (2001) Design of a modular self-reconfigurable robot. In: Australian conference on robotics and automation, Sydney, pp 38–43

    Google Scholar 

  61. Jorgensen MW, Ostergaard EH, Lund HH (2004) Modular ATRON: modules for a self-reconfigurable robot. In: IEEE/RSJ international conference on intelligent robots and systems, vol 2, pp 2068–2073

    Google Scholar 

  62. Kamimura A, Kurokawa H, Yoshida E (2005) Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans Mechatron 10(3):314–325

    Article  Google Scholar 

  63. Kasaya T, Miyazaki H, Saito S, Sato T (1999) Micro object handling under SEM by vision-based automatic control. In: IEEE international conference on robotics and automation, Detroit, pp 2189–2196

    Google Scholar 

  64. Kelly R, Santibanez V, Loria A (2005) Control of robot manipulators in joint space. Springer, London

    Google Scholar 

  65. Khalil I, Pichel M, Abelmann L, Misra S (2013) Closed-loop control of magnetotactic bacteria. Int J Rob Res 32:637–649

    Article  Google Scholar 

  66. Kong X (2014) Reconfiguration analysis of a 3-DOF parallel mechanism using Euler parameter quaternions and algebraic geometry method. Mech Mach Theory 74:188–201

    Article  Google Scholar 

  67. Kummer M, Abbott J, Kratochvil B, Borer R, Sengul A, Nelson B (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26:1006–1017

    Article  Google Scholar 

  68. Kurokawa H et al (1998) A 3-D self-reconfigurable structure and experiments. In: IEEE/RSJ international conference on intelligent robots and systems, pp 860–865

    Google Scholar 

  69. Li W, Slotine J-JE (1988) A rapidly deployable manipulator system. In: IEEE international conference on robotics and automation, vol 2, pp 704–709

    Google Scholar 

  70. Li Z, Melek W, Clark CM (2007) Development and characterization of a modular and reconfigurable robot. In: The 2nd international conference on changeable, agile, reconfigurable and virtual production (CARV 2007), Toronto, 22–24 July 2007

    Google Scholar 

  71. Li Y, Zhu M, Li Y (2008) Velocity-observer-based compensator for motion control of a reconfigurable manipulator. Control Theory Appl 25(5):891–897

    Google Scholar 

  72. Li Z, Melek WW, Clark C (2009) Decentralized robust control of robot manipulators with harmonic drive transmission and application to modular and reconfigurable serial arms. Robotica 27(2):291–302

    Article  Google Scholar 

  73. Li Y, Zhu M, Li Y (2009) Observer-based decentralized adaptive fuzzy control for reconfigurable manipulator. Control Decis 24(3):429–434

    MathSciNet  Google Scholar 

  74. Liu G, Abdul S, Goldenberg AA (2006) Distributed modular and reconfigurable robot control with torque sensing. In: IEEE international conference on mechatronics and automation, pp 384–389

    Google Scholar 

  75. Liu G, Abdul S, Goldenberg AA (2008) Decentralized robust control of modular and reconfigurable robots with harmonic drive. Robotica 26(1):75–84

    Article  Google Scholar 

  76. Liu G, Liu Y, Goldenberg AA (2011) Design, analysis, and control of a spring-assisted modular and reconfigurable robot. IEEE/ASME Trans Mechatron 16(4):695–706

    Article  Google Scholar 

  77. Madhevan B, Sreekumar M (2012) Structures and characteristics in reconfigurable modular robots. Advances in reconfigurable mechanisms and robots I. Springer, London, 525–534

    Google Scholar 

  78. Mahoney A, Sarrazin J, Bamberg E, Abbott J (2011) Velocity control with gravity compensation for magnetic helical microswimmers. Adv Robot 25:1007–1028

    Article  Google Scholar 

  79. Marino H, Bergeles C, Nelson BJ (2014) Robust electromagnetic control of microrobots under force and localization uncertainties. IEEE Trans Autom Sci Eng 11(1)

    Google Scholar 

  80. Martel S, Felfoul O, Mathieu JB, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009) Int J Robot Res 28:11–69

    Google Scholar 

  81. Mastrangeli M et al (2009) Self-assembly from milli-to nanoscales: methods and applications. J Micromech Microeng 19(8):083001

    Article  Google Scholar 

  82. Matsumaru T (1995) Design and control of the modular robot system: TOMMS. In: IEEE international conference on robotics and automation, vol 2, pp 2125–2131

    Google Scholar 

  83. Melek WW, Goldenberg AA (2003) Neurofuzzy control of modular and reconfigurable robots. IEEE/ASME Trans Mechatron 8(3):381–389

    Article  Google Scholar 

  84. Merlet J-P (2006) Parallel robots, 2nd edn. Springer/Hermes, Paris

    MATH  Google Scholar 

  85. Middleton RH, Goodwin GC, Mendel JM (1988) Adaptive computed torque control for rigid link manipulations. Syst Control Lett 10(1):9–16

    Article  MATH  Google Scholar 

  86. Mobes S, Laurent GJ, Clevy C, Le Fort-Piat N, Piranda B, Bourgeois J (2012) Toward a 2D modular and self-reconfigurable robot for conveying microparts, second workshop on design, control and software implementation for distributed MEMS

    Google Scholar 

  87. Murata S, Kurokawa H (2007) Self-reconfigurable robots. IEEE Robot Autom Mag 14(1):71–78

    Article  Google Scholar 

  88. Murata S, Kurokawa H, Kokaji S (1994) Self-assembling machine. In: Proceedings of IEEE international conference on robotics and automation, vol 1, pp 441–448

    Google Scholar 

  89. Murata S et al (1998) A 3-D self-reconfigurable structure. In: Proceedings of IEEE international conference on robotics and automation, pp 432–439

    Google Scholar 

  90. Murata S, Yoshida E, Kamimura A, Kurokawa H, Tomita K, Kokaji S (2002) M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans Mechatron 7(4)

    Google Scholar 

  91. Nagy PV (1988) The PUMA 560 industrial robot: inside-out. Creative Manufacturing Engineering Program, MS88-280. Society of Manufacturing Engineers, Dearborn, pp 4/67-4/79

    Google Scholar 

  92. Padhy SK (1992) On the dynamics of SCARA robot. Robot Autom Syst 10:71–78

    Article  Google Scholar 

  93. Palpacelli M-C, Carbonari L, Palmieri G, Callegari M (2015) Analysis and design of a reconfigurable 3-DoF parallel manipulator for multimodal tasks. IEEE/ASME Trans Mechatron 20(4):1975–1985

    Article  Google Scholar 

  94. Pamecha A, Chirikjian GS (1996) A useful metric for modular robot motion planning. In: IEEE international conference on robotics and automation, pp 442–447

    Google Scholar 

  95. Pamecha A, Ebert-Uphoff I, Chirikjian GS (1997) Useful metrics for modular robot motion planning. IEEE/ASME Trans Robot Autom 10(3):314–325

    MATH  Google Scholar 

  96. Paprotny I, Bergbreiter S (2013/2014) Small-scale robotics. LNAI, vol 8336. Springer, Berlin/Heidelberg, pp 1–15

    Google Scholar 

  97. Paredis CJJ, Brown HB, Khosla PK (1996) A rapidly deployable manipulator system. In: IEEE international conference on robotics and automation, vol 2, pp 1434–1439

    Article  Google Scholar 

  98. Pawashe C, Floyd S, Sitti M (2009) Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res 28(8):1077–1094

    Article  Google Scholar 

  99. Pawashe C, Floyd S, Sitti M (2011) Assembly and disassembly of magnetic mobile micro-robots towards 2-D reconfigurable micro-systems. In: IEEE international conference on robotics and automation (ICRA), Shanghai, pp 261–266

    Google Scholar 

  100. Robot Institute of America (1979)

    Google Scholar 

  101. Rus D, Vona M (2000) A physical implementation of the self-reconfiguring crystalline robot. In: Proceedings of the 2000 IEEE international conference on robotics and automation (ICRA), San Francisco, pp 1726–1733

    Google Scholar 

  102. Rus D, Vona M (2001) Crystalline robots: self-reconfiguration with compressible unit modules. J. Auton Robot 10(1):107–124

    Article  MATH  Google Scholar 

  103. Schmitz PKD, Kanade T (1988) The CMU reconfigurable modular manipulator system. Technical report CMU-RI-TR-88-07, Robotics Institute, Pittsburgh, PA

    Google Scholar 

  104. Schweikardt E Current trends and miniaturization challenges for modular self-reconfigurable robotics. Carnegie Mellon University, Pittsburgh

    Google Scholar 

  105. Shahini M, Melek WW, Yeow JTW (2009) Micro-force compensation in automated micro-object positioning using adaptive neural networks. Smart Mater Struct 18:095023 (14pp)

    Article  Google Scholar 

  106. Shahini M, Melek WW, Yeow JTW (2010) Characterization of surface micro forces under varying operational conditions in micro-sized object pushing: an empirical approach. J Micromech Microeng 20(5):055013. Published 14 April 2010

    Google Scholar 

  107. Shahini M, Melek WW, Yeow JTW (2013) Automated sequential pushing of micro objects by using adaptive controller. Int J Robot Autom 2(4):163

    Google Scholar 

  108. Shen YT, Xi N, Wejinya UC, Li WJ, Xiao JH (2004) Infinite dimension system approach for hybrid force/position control in micromanipulation. In: Proceedings of IEEE international conference on robotics and automation, vols 1–5, pp 2912–2917

    Google Scholar 

  109. Shen WM, Chiu H, Rubenstein M, Salemi B (2008) In: Proceedings of the space technology international forum, Albuquerque, New Mexico

    Google Scholar 

  110. Shi L, Singh SK (1992) Decentralized adaptive controller design for large-scale systems with higher order interconnections. IEEE Trans Autom Control 37(8):1106–1118

    Article  MathSciNet  MATH  Google Scholar 

  111. Siljak DD (1991) Decentralized control of complex systems. Mathematics in science and engineering, vol 184. Dover, New York

    Google Scholar 

  112. Sitti M (2000) Controlled pushing of nanoparticles: modeling and experiments. IEEE/ASME Trans. Mechatron. 5(2):199–221

    Article  Google Scholar 

  113. Sitti M (2004) Atomic force microscope probe based controlled pushing for nanotribological characterization. IEEE-ASME Trans Mechatron 9(2):343–349

    Article  Google Scholar 

  114. Sitti M (2007) Microscale and nanoscale robotics systems [grand challenges of robotics]. IEEE Robot Autom Mag 14(1):53–60

    Article  Google Scholar 

  115. Sitti M (2009) Voyage of the microrobots. Nature 458:1121–1122

    Article  Google Scholar 

  116. Slotine J-JE (1985) The robust control of robot manipulators. Int J Robot Res 4(2):49–64

    Article  Google Scholar 

  117. Slotine J-JE, Li W (1986) Adaptive control of mechanical manipulators. In: Winter annual meeting (ASME)

    Google Scholar 

  118. Slotine J-JE, Li W (1988) Adaptive manipulator control: a case study. IEEE Trans Automat Control 33(11):995–1003

    Article  MATH  Google Scholar 

  119. Spong MW, Thorp JS, MJ (1987) Robust microprocessor control of robot manipulators. Automatica 23(3):373–379

    Google Scholar 

  120. Su CY, Leung TP (1993) A sliding mode controller with bound estimation for robot manipulators. IEEE Trans Robot Autom 9(2):208–214

    Article  Google Scholar 

  121. Suh JW, Homans SB, Yim M (2002) Telecubes: mechanical design of a module for self-reconfigurable robotics. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 4095–4101

    Google Scholar 

  122. Sul O, Falvo M, Taylor R, Washburn S, Superfine R (2006) Thermally actuated untethered impact-driven locomotive microdevices. Appl Phys Lett 89:203512

    Article  Google Scholar 

  123. Sun Y, Nelson BJ (2002) Biological cell injection using an autonomous microrobotic system. Int J Robot Res 21(10–11):861–868

    Article  Google Scholar 

  124. Sun D, Hu S, Shao X, Liu C (2009) Global stability of a saturated nonlinear PID controller for robot manipulators. IEEE Trans Ind Electron 17(4):892–899

    Google Scholar 

  125. Tang Y, Tomizuka M, Guerrero G, Montemayor G (2006) Decentralized robust control of mechanical systems. IEEE Trans Autom Control 45(4):771–776

    Article  MathSciNet  MATH  Google Scholar 

  126. Tarokh M (1999) Decoupled nonlinear three-term controllers for robot trajectory tracking. IEEE Trans Robot Autom 15(2):369–380

    Article  MathSciNet  Google Scholar 

  127. Thompson JA, Fearing RS (2001) Automating microassembly with ortho-tweezers and force sensing. In: Proceedings of the 2001 IEEE/RJS/IROS international conference on intelligent robots and systems, vols 1–4, pp 1327–1334

    Google Scholar 

  128. Tomita K, Murata S, Kurokawa H, Yoshida E, Kokaji S (1999) Self assembly and self-repair method for a distributed mechanical system. IEEE Trans Robot Autom pp 1035–1045

    Google Scholar 

  129. Tomita K et al (1999) Self-assembly and self-repair method for distributed mechanical system. IEEE Trans Robot Autom 15(6):1035–1045

    Article  MathSciNet  Google Scholar 

  130. Unsal C et al (1999) I(CDS)-cubes: a modular self-reconfigurable bipartite robotic system. In: Proceedings of SPIE, sensor fusion and decentralized control in robotic systems II, pp 258–269

    Google Scholar 

  131. Vollmers K, Frutiger D, Kratochvil B, Nelson B (2008) Wireless resonant magnetic microactuator for untethered mobile microrobots. Appl Phys Lett 92:144103

    Article  Google Scholar 

  132. White PJ, Kopanksi K, Lipson H (2004) Stochastic self-reconfigurable cellular robotics. In: Proceedings of the 2004 IEEE international conference on robotics and automation (ICRA), New Orleans, pp 2888–2893

    Google Scholar 

  133. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421

    Article  Google Scholar 

  134. Xu T, Hwang G, Andreff N, Regnier S (2015) Planar path following of 3-D steering scaled-up helical microswimmers. IEEE Trans Robot 31:117–127

    Article  Google Scholar 

  135. Yang G, Chen I-M, Lim WK, Yeo SH (1999) Design and kinematic analysis of modular reconfigurable parallel robots. In: IEEE international conference on robotics and automation, Detroit, MI, pp 2501–2506

    Google Scholar 

  136. Yang G, Chen IM, Lim WK, Yeo SH (2001) Kinematic design of modular reconfigurable in-parallel robots. Autonomous robots, vol 10, pp 83–89. Kluwer Academic Publishers, Manufactured in The Netherlands

    Google Scholar 

  137. Yang G, Chen I-M, Lim WK, Yeo SH (2001) Self-calibration of three-legged modular reconfigurable parallel robots based on leg-end distance errors. Robotica, vol 19. Cambridge University Press, Cambridge, pp 187–198. (Printed in the United Kingdom)

    Google Scholar 

  138. Yang G, Chen I-M, Chen W, Yeo SH (2003) Design and analysis of a 3-RPRS modular parallel manipulator for rapid deployment. In: International conference on advanced intelligent mechatronics (AIM 2003)

    Google Scholar 

  139. Yang G, Chen I-M, Chen W, Yeo SH (2003) Design and analysis of a 3-RPRS modular parallel manipulator for rapid deployment. In: IEEE/ASME international conference on advanced intelligent mechatronics, pp 1250–1255

    Google Scholar 

  140. Ye W, Fang Y, Zhang K, Guo S (2014) A new family of reconfigurable parallel mechanisms with diamond kinematotropic chain. Mech Mach Theory 74:1–9 (2014)

    Article  Google Scholar 

  141. Yesin KB, Vollmers K, Nelson BJ (2006) Modeling and control of untethered biomicrorobots in fluid environment using electromagnetic fields. Int J Robot Res 25(5/6):527–536

    Article  Google Scholar 

  142. Yim M, Duff DG, Roufas KD (2000) PolyBot: a modular reconfigurable robot. In: Proceedings of the 2000 IEEE international conference on robotics and automation (ICRA), San Francisco, pp 514–520

    Google Scholar 

  143. Yim M, Shirmohammadi B, Sastra J, Park M, Dugan M (2007) Towards robotic self-reassembly after explosion. In: IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA, Oct 29–Nov 2 2007

    Google Scholar 

  144. Yim M, Shen WM, Salemi B, Rus D, Moll M, Lipson H, Klavins E, Chirikjian GS (2007) Modular self-reconfigurable robot systems. IEEE Robot Autom Mag 14(1):43–52

    Article  Google Scholar 

  145. Yoshida E, Murata S, Kokaji S, Tomita K, Kurokawa H (2000) Micro self-reconfigurable robotic system using shape memory alloy. Distributed autonomous robotic systems, vol 4. Springer, Berlin, pp 145–154

    Google Scholar 

  146. Yoshida E, Kokaji S, Murata S, Tomita K, Kurokawa H (2001) Miniaturized self-reconfigurable system using shape memory alloy. J Robot Mechatron 13:212

    Article  Google Scholar 

  147. Yoshida E, Murata S, Kamimura A, Tomita K, Kurokawa H, Kokaji S (2001) Motion planning for a self-reconfigurable modular robot. In: Experimental robotics VII. Springer, Berlin/Heidelberg, pp 385–394

    Chapter  Google Scholar 

  148. Zhang D (2010) Parallel robotic machine tools. Springer, New York

    Book  Google Scholar 

  149. Zhang D, Bi Z (2006) Development of reconfigurable parallel kinematic machines using modular design approach. In: CDEN/RCCI international design conference, University of Toronto, ON

    Google Scholar 

  150. Zhang D, Gao Z (2012) Forward kinematics, performance analysis, and multi-objective optimization of a bio-inspired parallel manipulator. Robot Comput-Integr Manuf 28(4):484–492

    Article  Google Scholar 

  151. Zhang L, Abbott J, Dong L, Kratochvil B, Bell D, Nelson B (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94:064107

    Article  Google Scholar 

  152. Zhao B, Li Y (2014) Decentralized differential tracker based control of reconfigurable manipulators without velocity sensor. In: 33rd Chinese control conference (CCC), pp 8370–8374

    Google Scholar 

  153. Zhao J, Ren Z, Zhang Y (2006) Configuration matching in self-reconfigurable process of modular self-reconfigurable robots. In: IEEE international conference on mechatronics and automation, Luoyang, pp 284–288

    Google Scholar 

  154. Zhu WH, Lamarche T (2007) Modular robot manipulators based on virtual decomposition control. In: IEEE international conference on robotics and automation (ICRA). IEEE, New York, pp 2235–2240

    Google Scholar 

  155. Zhu M, Li Y (2010) Decentralized adaptive fuzzy sliding mode control for reconfigurable modular manipulators. Int J Robust Nonlinear Control 20(4):472–488

    MathSciNet  MATH  Google Scholar 

  156. Zeng Q, Ehmann KF (2014) Design of parallel hybrid-loop manipulators with kinematotropic property and deployability. Mech Mach Theory 71:1–26 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Gungor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gungor, G., Fidan, B., Melek, W.W. (2017). Reconfigurable Robot Manipulators: Adaptation, Control, and MEMS Applications. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics