Skip to main content

Microrobots for Active Object Manipulation

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Active manipulation of objects that are smaller than 1 mm in size finds its application in tasks such as assembly and pick-and-placement. Here, we present the design of a family of microrobots capable of object manipulation in a fluidic environment. The microrobots are fabricated from polymer (SU-8) with internal soft-magnetic posts (CoNi) that align to an external magnetic field and have a maximum dimension of \(50 \times 200 \times 600\,\upmu \mathrm{m}\). Actuation of the device can be enforced with either a rotating or stepping magnetic field and corresponds to the method of object manipulation. In particular, a rotating magnetic field enables a fluidic-based noncontact manipulation technique, while a stepping magnetic field enables a contact manipulation technique. The capabilities of these designs are analysed and demonstrated with respect to the generated motion and the manipulation of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.magnebotix.com

References

  1. Abbott J, Nagy Z, Beyeler F, Nelson B (2007) Robotics in the small, part I: microbotics. IEEE Robot Autom Mag 14(2):92–103

    Article  Google Scholar 

  2. Purcell E (1977) Life at low Reynolds number. Am J Phys 45(1):3–11

    Article  MathSciNet  Google Scholar 

  3. Abbott JJ, Peyer KE, Cosentino Lagomarsino M, Zhang L, Dong LX, Nelson BJ (2009) How should microrobots swim? Int J Robot Res 28(11–12):1434–1447

    Article  Google Scholar 

  4. Sun Y, Liu X (2015) Micro- and nanomanipulation tools. Wiley, New York

    Book  Google Scholar 

  5. Bouchebout S, Bolopion A, Abrahamians J-O, Régnier S (2012) An overview of multiple DoF magnetic actuated micro-robots. J Micro-Nano Mechatronics 7(4):97–113

    Article  Google Scholar 

  6. Xu T, Yu J, Yan X, Choi H, Zhang L (2015) Magnetic actuation based motion control for microrobots: an overview. Micromachines 6:1346–1364

    Article  Google Scholar 

  7. Banerjee A, Gupta S (2013) Research in automated planning and control for micromanipulation. IEEE Trans Autom Sci Eng 10(3):485–495

    Article  MathSciNet  Google Scholar 

  8. Savia M, Koivo H (2009) Contact micromanipulation - survey of strategies. IEEE/ASME Trans Mechatronics 14(4):504–514

    Article  Google Scholar 

  9. Kummer M, Abbott J, Kratochvil B, Borer R, Sengul A, Nelson B (2010) Octomag: An electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26(6), 1006–1017

    Article  Google Scholar 

  10. Bergeles C, Kratochvil B, Nelson B (2012) Visually servoing magnetic intraocular microdevices. IEEE Trans Robot 28(4):798–809

    Article  Google Scholar 

  11. Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ (2009) Small, fast, and under control: wireless resonant magnetic micro-agents. Int J Robot Res 29:613–636.

    Article  Google Scholar 

  12. Pawashe C, Floyd S, Diller E, Sitti M (2012) Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments. IEEE Trans Robot 28(2):467–477

    Article  Google Scholar 

  13. Steager EB, Sakar MS, Magee C, Kennedy M, Cowley A, Kumar V (2013) Automated biomanipulation of single cells using magnetic microrobots. Int J Robot Res 32:346–359

    Article  Google Scholar 

  14. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Ann Rev Biomed Eng 12:55–85

    Article  Google Scholar 

  15. Crane NB, Onen O, Carballo J, Ni Q, Guldiken R (2012) Fluidic assembly at the microscale: progress and prospects. Microfluid Nanofluid 14(3):383–419

    Google Scholar 

  16. Floyd S, Pawashe C, Sitti M (2009) Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot. IEEE Trans Robot 25(6):1332–1342

    Article  Google Scholar 

  17. Pieters RS, Tung H-W, Charreyron S, Sargent SF, Nelson BJ (2015) RodBot: a rolling microrobot for micromanipulation. In: Proceedings of IEEE international conference on robotics and automation (ICRA), pp 4042–4047

    Google Scholar 

  18. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics: with special applications to particulate media. Martinus Nijhoff, The Hague

    MATH  Google Scholar 

  19. Bhushan B (1998) Handbook of micro/nano tribology. CRC Press, Boca Raton

    Book  Google Scholar 

  20. Tung H-W, Peyer KE, Sargent DF, Nelson BJ (2013) Noncontact manipulation using a transversely magnetized rolling robot. Appl Phys Lett 103(11):114101

    Article  Google Scholar 

  21. Tung H-W, Sargent DF, Nelson BJ (2014) Protein crystal harvesting using the RodBot - a wireless, mobile microrobot. J Appl Crystallogr 4:692–700

    Article  Google Scholar 

  22. Ergeneman O, Sivaraman KM, Pané S, Pellicer E, Teleki A, Hirt AM, Baró MD, Nelson BJ (2011) Morphology, structure and magnetic properties of cobalt nickel films obtained from acidic electrolytes containing glycine. Electrochim Acta 56(3):1399–1408

    Article  Google Scholar 

  23. Kratochvil BE, Kummer MP, Erni S, Borer R, Frutiger DR, Schürle, S, Nelson BJ (2014) MiniMag: a hemispherical electromagnetic system for 5-DOF wireless micromanipulation. In Khatib O, Kumar V, Sukhatme G (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 79. Springer, Berlin, pp 317–329

    Chapter  Google Scholar 

  24. Merlen A, Frankiewicz C (2011) Cylinder rolling on a wall at low Reynolds numbers. J Fluid Mech 685:461–494

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel S. Pieters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pieters, R.S., Tung, HW., Nelson, B.J. (2017). Microrobots for Active Object Manipulation. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics