Skip to main content

Inverse Adaptive Controller Design for Magnetostrictive-Actuated Dynamic Systems

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

  • 3116 Accesses

Abstract

Magnetostrictive actuators featuring high energy densities, large strokes, and fast responses are playing an increasingly important role in precision positioning applications. However, such actuators invariably exhibit asymmetric hysteresis nonlinearities that could cause oscillations and errors in the micro-positioning tasks. Therefore, in this chapter, an inverse adaptive controller design method is developed for the purpose of mitigating the hysteresis effect in the magnetostrictive-actuated dynamic systems. Focusing on the asymmetric hysteresis phenomenon, an asymmetric shifted Prandtl–Ishlinskii (ASPI) model and its inverse are utilized to describe and compensate the asymmetric hysteresis behaviors in the magnetostrictive actuator, respectively. To guarantee the global stability of the closed-loop system and the transient performance of the tracking error, a prescribed adaptive control method will be applied. The effectiveness of the proposed control scheme is validated on the magnetostrictive-actuated experimental platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davino D, Giustiniani A, Visone C (2011) A two-port nonlinear model for magnetoelastic energy-harvesting devices. IEEE Trans Ind Electron 58(6):2556–2564

    Article  Google Scholar 

  2. Olabi AG, Grunwald A (2008) Design and application of magnetostrictive materials. Mater Des 29(2):469–483

    Article  Google Scholar 

  3. Yang B-T, Yang D-H, Xu P-Y (2012) Large stroke and nanometer-resolution giant magnetostrictive assembled actuator for driving segmented mirrors in very large astronomical telescopes. Sensor Actuat A-Phys 179(0):193–203

    Google Scholar 

  4. Karunanidhi S, Singaperumal M (2010) Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve. Sensor Actuat A-Phys 157(2):185–197

    Article  Google Scholar 

  5. Wang C-L, Cheng X, An P (2010) Modeling and simulation of a high-frequency micro-pump based on giant magnetostrictive material (GMM). J Coal Sci Eng (China) 16(2):206–209

    Article  Google Scholar 

  6. Tan XB, Baras JS (2004) Modeling and control of hysteresis in magnetostrictive actuators. Automatica 40(9):1469–1480

    Article  MathSciNet  MATH  Google Scholar 

  7. Li L, Zhang C, Yan B, Zhang L, Li X (2011) Research of fast-response giant magnetostrictive actuator for space propulsion system. IEEE Trans Plasma Sci 39(2):744–748

    Article  Google Scholar 

  8. Oates WS, Evans PG, Smith RC, Dapino MJ (2009) Experimental implementation of a hybrid nonlinear control design for magnetostrictive actuators. J Dyn Syst Meas Control 131(4):041004

    Article  Google Scholar 

  9. Su C-Y, Wang Q, Chen X, Rakheja S (2005) Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis. IEEE Trans Autom Control 50(12):2069–2074

    Article  MathSciNet  Google Scholar 

  10. Krejci P, Kuhnen K (2001) Inverse control of systems with hysteresis and creep. IEE Proc Control Theory Appl 148(3):185–192

    Article  Google Scholar 

  11. Kuhnen K (2003) Modeling, identification and compensation of complex hysteretic nonlinearities. Eur J Control 9(4):407–418

    Article  MATH  Google Scholar 

  12. Li Z, Hu Y, Liu Y, Chen T, Yuan P (2012) Adaptive inverse control of non-linear systems with unknown complex hysteretic non-linearities. IET Control Theory A 6(1):1–7

    Article  MathSciNet  Google Scholar 

  13. Rakotondrabe M (2011) Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans Autom Sci Eng 8(2):428–431

    Article  Google Scholar 

  14. Zhou J, Wen C, Li T (2012) Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity. IEEE Trans Autom Control 57(10):2627–2633

    Article  MathSciNet  Google Scholar 

  15. Preisach F (1935) Über die magnetische Nachwirkung. Z Phys 94:277–302

    Article  Google Scholar 

  16. Jiang H, Ji HL, Qiu JH, Chen YS (2010) A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators. IEEE Trans Ultrason Ferroelect Freq Control 57(5):1200–1210

    Article  Google Scholar 

  17. Jiang CG, Deng MC, Inoue A (2008) A novel modeling of nonlinear plants with hysteresis described by non-symmetric play operator. The 7th world congress on intelligent control and automation, Chongqing, China, pp. 2221–2224

    Google Scholar 

  18. Janaideh AM, Mao JQ, Rakheja S, Xie WF, Su C-Y (2008) Generalized Prandtl-Ishlinskii hysteresis model: hysteresis modeling and its inverse for compensation in smart actuators. IEEE Conference on Decision and Control, Cancun, Mexico, pp. 5182–5187

    Google Scholar 

  19. Tao G, Kokotovic PV (1993) Adaptive control of systems with backlash. Automatica 29(2):323–335

    Article  MathSciNet  MATH  Google Scholar 

  20. Tao G, Kokotovic PV (1995) Adaptive control of plants with unknown hysteresis. IEEE Trans Autom Control 40(2):200–212

    Article  MathSciNet  MATH  Google Scholar 

  21. Janaideh AM, Su C-Y, Rakheja S (2012) Inverse compensation error of the Prandtl-Ishlinskii model. IEEE conference on decision and control, Maui, HI, USA, pp. 1597–1602

    Google Scholar 

  22. Li Z, Su C-Y, Chen X (2014) Modeling and inverse adaptive control of asymmetric hysteresis systems with applications to magnetostrictive actuator. Control Eng Pract 33:148–160

    Article  Google Scholar 

  23. Li J, Xu M (2011) Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress. J Appl Phys 110(6):063918

    Article  Google Scholar 

  24. Brokate M, Sprekels J (1996) Hysteresis and phase transitions. Springer, New York

    Book  MATH  Google Scholar 

  25. Krejci P (1986) Hysteresis, convexity and dissipation in hyperbolic equation. International series of math science and applications

    MATH  Google Scholar 

  26. Zhou J, Wen C, Zhang Y (2004) Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Autom Control 49(10):1751–1759

    Article  MathSciNet  Google Scholar 

  27. Bechlioulis CP, Rovithakis GA (2009) Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica 45(2):532–538

    Article  MathSciNet  MATH  Google Scholar 

  28. Bechlioulis CP, Rovithakis GA (2008) Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans Autom Control 53(9):2090–2099

    Article  MathSciNet  Google Scholar 

  29. Kristic M, Kokotovic PV, Kanellakopoulos I (1995) Nonlinear and adaptive control design. Wiley, New York

    Google Scholar 

  30. Riccardi L, Naso D, Turchiano B, Janocha H (2013) Adaptive control of positioning systems with hysteresis based on magnetic shape memory alloys. IEEE Trans Control Syst Technol 21(6):2011–2023

    Article  Google Scholar 

  31. Shen J-C, Jywe W-Y, Chiang H-K, Shu Y-L (2008) Precision tracking control of a piezoelectric-actuated system. Precis Eng 32(2):71–78

    Article  Google Scholar 

  32. Zhong J, Yao B (2008) Adaptive robust precision motion control of a piezoelectric positioning stage.: IEEE Trans Control Syst Technol 16(5):1039–1046

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Yi Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Z., Su, CY., Zhang, X. (2017). Inverse Adaptive Controller Design for Magnetostrictive-Actuated Dynamic Systems. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics