Skip to main content

Micromanipulation Tools

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

This chapter classifies the working principles of micromanipulation and compares the end-effectors developed based on different principles. Differing from the dominating gravitational forces at macroscale, adhesion forces by scaling effect dominate the operations at microscale. One significant challenge is that adhesion forces take time to release objects accurately; new manipulation strategies are required to overcome such a challenge. This chapter also discusses some major manipulation strategies including magnetic levitation, electrostatic levitation, air levitation, and acoustic levitation; these strategies are evaluated using the examples from the literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park JK, Ro PI (2013) Noncontact manipulation of light objects based on parameter modulations of acoustic pressure nodes. J Vib Acoust 135:031011 (1–7)

    Article  Google Scholar 

  2. Whitworth G, Coakley W (1992) Particle column formation in a stationary ultrasonic field. J Acoust Soc Am 91:79–85

    Article  Google Scholar 

  3. Whitworth G, Grundy M, Coakley W (1991) Transport and harvesting of suspended particles using modulated ultrasound. Ultrasonics 29(6):439–444

    Article  Google Scholar 

  4. Woodside SM, Bowen BD, Piret JM (1997) Measurement of ultrasonic forces for particle–liquid separations. AIChE J 43(7):1727–1736

    Article  Google Scholar 

  5. Tuziuti T, Kozuka T, Mitome H (1999) Measurement of distribution of acoustic radiation force perpendicular to sound beam axis. Jpn J Appl Phys 38:3297–3301

    Article  Google Scholar 

  6. Spengler J, Coakley W, Christensen K (2003) Microstreaming effects on particle concentration in an ultrasonic standing wave. AIChE J 49(11):2773–2782

    Article  Google Scholar 

  7. Perales F, Gonzalez I (2005) On the forces acting in micromanipulation of particles at low frequencies. In: Proceedings of the IEEE international ultrasonics symposium, Rotterdam, The Netherlands, 18–21 Sept, vol 4, pp 2108–2111

    Google Scholar 

  8. Kohl M, Krevet B, Just E (2002) SMA microgripper system. Sens Actuators A 97–98:646–52

    Article  Google Scholar 

  9. Ok J, Chu M, Kim C-J (1999) Pneumatically driven microcage for micro-objects in biological liquid. In: IEEE MEMS, pp 459–563

    Google Scholar 

  10. Petrovic D, Popovic G, Chatzitheodoridis E, Del Medico O, Almansa A, Sumecz F, Brenner W, Detter H (2002) Gripping tools for handling and assembly of microcomponents. In: Proceedings of the 23rd international conference on microelectronics (Miel 2002), 12–15 May, NIS, Yugoslavia, vol 1, pp 247–250

    Google Scholar 

  11. Zesch W, Brunner M, Weber A (1997) Vacuum tool for handling micro-objects with a NanoRobot. In: IEEE international conference on robotics and automation, 20–25 Apr, vol 2, pp 1761–1766

    Google Scholar 

  12. Enikov ET, Lazarov KV (2001) Optically transparent gripper for microassembly. Proc SPIE 4568:40–9

    Article  Google Scholar 

  13. Tsuchiya K, Murakami A, Fortmann G, Nakao M, Hatamura Y (1999) Micro assembly and micro bonding in nano manufacturing world. Proc SPIE 3834:132–40

    Article  Google Scholar 

  14. Bark C, Binnenböse T, Vögele G, Weisener T, Widmann M (1998) Gripping with low viscosity fluids. In: IEEE international workshop on MEMS, pp 301–305

    Google Scholar 

  15. Arai F, Fukuda T (1997) A new pick up and release method by heating for micromanipulation. In: IEEE MEMS, pp 383–388

    Google Scholar 

  16. Bancel PA, Cajipe VB, Rodier F, Witz J (1998) Laser seeding for biomolecular crystallization. J Cryst Growth 191:537–44

    Article  Google Scholar 

  17. Grutzeck H, Kiesewetter L (2002) Downscaling of grippers for micro assembly. Microsyst Technol 8:27–31

    Article  Google Scholar 

  18. Agnus J (2003) Contribution à la micromanipulation: Etude, Réalisation, Caractérisation et Commande d’une Micropince Piézoélectrique. PhD thesis, Laboratoire d’Automatique de Besançon (UMR CNRS 6596)

    Google Scholar 

  19. Danuser G, Pappas I, Vögeli B, Zesch W, Dual J (1998) Manipulation of microscopic objects with nanometer precision: potentials and limitations in nano robot design. Int J Rob Res (submitted)

    Google Scholar 

  20. Zesch W, Brunner M, Weber A (1997) Vacuum tool for handling microobjects with a nanorobot. In: Proceedings of the international conference on robotics and automation, pp 1761–1766

    Google Scholar 

  21. Kang BJ, Hung LS, Kuo SK, Lin SC, Liaw CM (2003) H∞ 2DOF control for the motion of a magnetic suspension positioning stage driven by inverter-fed linear motor. Mechatronics 13(7):677–696

    Article  Google Scholar 

  22. Motokawa M, Mogi I, Tagami M, Hamai M, Watanabea K, Awaji S (1998) Magnetic levitation experiments in Tohoku University. Physica B 256:618–620

    Article  Google Scholar 

  23. Bona B, Brusa E, Carabelli S, Chiaberge M, Delprete C, Genta G et al (1997) Review article: the mechatronics laboratory at politecnico di torino. Mechatronics 7(5):413–427

    Article  Google Scholar 

  24. Boukallel M, Piat E, Abadie J (2003) Passive diamagnetic levitation: theoretical foundations and application to the design of a micro-nano force sensor. In: Proceedings of the 2003 IEEE international conference on intelligent robots and systems, Las Vegas, Nevada, pp 1062–1067

    Google Scholar 

  25. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond Ser A 324:301

    Article  Google Scholar 

  26. Fantoni G (2003) Assembly of mini and microparts: development of an electrostatic feeder. In: Proceedings of the 6th A.I.Te.M. international conference

    Google Scholar 

  27. Bar-Ziv A, Sarofim AF (1991) The electrodynamic chamber: a tool for studying high temperature kinetics involving liquid and solid particles. Prog Energy Combust Sci 17:1–65

    Article  Google Scholar 

  28. Bark C, Binnenboese T (1998) Gripping with low viscosity fluids. In: Proceedings of IEEE international workshop on MEMS, Heidelberg, pp 301–305

    Google Scholar 

  29. Bark K-B (1999) Adhäsives Greifen von kleinen Teilen mittels niedrigviskoser Flüssigkeiten. Springer, Berlin

    Book  Google Scholar 

  30. Biganzoli F, Fassi I, Pagano C (2005) Development of a gripping system based on capillary force. In: Proceedings of ISATP05, Montreal, Canada, pp 36–40

    Google Scholar 

  31. El-Khoury M (1998) Ice gripper handles micro-sized components. Design News. www.designnews.com

  32. Stefan J, Seliger G (1999) Handling with ice—the cryo-gripper, a new approach. Assem Autom 19(4):332–337

    Article  Google Scholar 

  33. Gengenbach U, Boole J (2000) Electrostatic feeder for contactless transport of miniature and microparts. In: Proceedings of SPIE conference on microrobotics and microassembly II, pp 75–81

    Google Scholar 

  34. Höppner J (2002) Verfahren zur berührungslosen handhabung mittels leistungsstarker schallwandler. PhD thesis, Technische Universität München

    Google Scholar 

  35. Daidžić N (1995) Nonlinear droplet oscillations and evaporation in an ultrasonic levitator. PhD thesis, Universität Erlangen-Nürnberg

    Google Scholar 

  36. Li J, Cao W, Liu P, Ding H (2010) Influence of gas inertia and edge effect on squeeze film in near field acoustic levitation. Appl Phys Lett 96:243507

    Article  Google Scholar 

  37. Brandt EH (2001) Suspended by sound. Nature 413:474–475

    Article  Google Scholar 

  38. Xie W, Wei B (2001) Parametric study of single-axis acoustic levitation. Appl Phys Lett 79:881

    Article  Google Scholar 

  39. Chu BT, Apfel RE (1982) Acoustic radiation pressure produced by a beam of sound. J Acoust Soc Am 72(6):1673–1687

    Article  Google Scholar 

  40. Wiesendanger M (2001) Squeeze film air bearings using piezoelectric bending elements. PhD thesis, Ecole polytechnique fédérale de Lausanne

    Google Scholar 

  41. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24(4):156–159

    Article  Google Scholar 

  42. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290

    Article  Google Scholar 

  43. Bancel P, Cajipe V, Rodier F (1999) Manipulating crystals with light. J Cryst Growth 196:685–690

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuming Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, J., Bi, Z. (2017). Micromanipulation Tools. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics