Skip to main content

Photo-Induced Fabrication Technology for 3D Microdevices

  • Chapter
  • First Online:
Advanced Mechatronics and MEMS Devices II

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

This chapter introduces photo-induced fabrication technologies for 3D MEMS devices. At first, we introduce principles of 3D photo-induced fabrication focusing on common aspects of photo-induced cross-linking and range of applicable materials. Then, we examine four technologies and their outcome of applications in detail where fabricated feature sizes decrease and resolution increases with progression of this chapter. (1) Microstereolithography enables a layer-by-layer fabrication of 3D devices, which find application in coaxial microfluidics and device fabrication in the presence of cells. (2) In situ photolithography is a 3D device fabrication with a pre-polymer solution inside microfluidic devices enabling fabrication of 3D structures inside microfluidic channels. (3) Flow lithography applies the concept of flowing pre-polymer material inside a microfluidic device in order to fabricate variously shaped microparticles for self-assembly or potential use as drug delivery systems. (4) Direct laser writing exposes focused laser light moved by computerized piezo actuation through pre-polymer medium enabling to structure with nanometer-sized feature sizes and constructing materials with special optical or mechanical properties as well as 3D devices for cell culture studies. The application of the achieved 3D devices ranges from microfluidic elements over bioMEMS devices constituting of analytical tools, cell culture conservation, and cell culture studies to biomedical application suitable for implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maruo S, Fourkas JT (2008) Recent progress in multiphoton microfabrication. Laser Photonics Rev 2:100–111

    Article  Google Scholar 

  2. Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67:1721–1754

    Article  Google Scholar 

  3. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  4. Nakamaru Y, Honma H (2009) Fabrication of three-dimensional microstructure by nickel plating and photolithography. Trans Inst Met Finish 87:259–263

    Article  Google Scholar 

  5. Larramendy F, Serien D, Yoshida S, Jalabert L, Takeuchi S, Paul O (2015) High-topography surface functionalization based on parylene-C peel-off for patterned cell growth. In: MEMS 2015 Proc., pp 328–331

    Google Scholar 

  6. Däschner W, Long P, Larsson M, Lee SH (1995) Fabrication of diffractive optical elements using a single optical exposure with a gray level mask. J Vac Sci Technol B 13:2729–2731

    Article  Google Scholar 

  7. Hayashi T, Shibata T, Kawashima T, Makino E, Mineta T, Masuzawa T (2008) Photolithography system with liquid crystal display as active gray-tone mask for 3D structuring of photoresist. Sensors Actuators A 144:381–388

    Article  Google Scholar 

  8. Miyake M, Chen Y-C, Braun PV, Wiltzius P (2009) Fabrication of three-dimensional photonic crystals using multibeam interference lithography and electrodeposition. Adv Mater 21:3012–3015

    Article  Google Scholar 

  9. Suslik L, Pudis D, Skriniarova J, Martincek I, Kubicova I, Kovac J (2012) 2D photonic structures for optoelectronic devices prepared by interference lithography. Phys Procedia 32:807–813

    Article  Google Scholar 

  10. Hirai Y, Inamoto Y, Sugano K, Tsuchiya T, Tabata O (2007) Moving mask UV lithography for three-dimensional structuring. J Micromech Microeng 17:199–206

    Article  Google Scholar 

  11. Larramendy F, Mazenq L, Temple-Boyer P, Nicu L (2012) Three-dimensional closed microfluidic channel fabrication by stepper projection single step lithography: the diabolo effect. Lab Chip 12:387–390

    Article  Google Scholar 

  12. Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89:144101

    Article  Google Scholar 

  13. Morimoto Y, Tan W-H, Takeuchi S (2009) Three-dimensional axisymmetric flow-focusing device using stereolithography. Biomed Microdevices 11:369–377

    Article  Google Scholar 

  14. Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, Sato K, Miura S, Iwanaga S, Kuribayashi-Shigetomi K, Matsunaga YT, Shimoyama Y, Takeuchi S (2013) Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater 12:584–590

    Article  Google Scholar 

  15. Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater 7:581–587

    Article  Google Scholar 

  16. Paulsen KS, Di Carlo D, Chung AJ (2015) Optofluidic fabrication for 3D-shaped particles. Nat Commun 6:6976

    Article  Google Scholar 

  17. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046

    Article  Google Scholar 

  18. Sochol RD, Glick CC, Lee KY, Brubaker T, Lu A, Wah M, Gao S, Hicks E, Wolf KT, Iwai K, Lee LP, Lin L (2013) Single-layer “domino” diodes via optofluidic lithography for ultra-low reynolds number applications. In: MEMS 2013 Proc., pp 153–156

    Google Scholar 

  19. Moon B-U, Tsai SSH, Hwang DK (2015) Rotary polymer micromachines: in situ fabrication of microgear components in microchannels. Microfluid Nanofluid 19:67–74

    Article  Google Scholar 

  20. Klein F, Richter B, Striebel T, Franz CM, vonFreymann G, Wegener M, Bastmeyer M (2011) Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater 23:1341–1345

    Article  Google Scholar 

  21. Kim S, Qiu F, Kim S, Ghanbari A, Moon C, Zhang L, Nelson BJ, Choi H (2013) Fabrication and characterization of magnetic microrobots. Adv Mater 25:5863–5868

    Article  Google Scholar 

  22. Kaehr B, Allen R, Javier DJ, Currie J, Shear JB (2004) Guiding neuronal development with in situ microfabrication. Proc Natl Acad Sci USA 101:16104–16108

    Article  Google Scholar 

  23. Harper JC, Brozik SM, Brinker CJ, Kaehr B (2012) Biocompatible microfabrication of 3D isolation chambers for targeted confinement of individual cells and their progeny. Anal Chem 84:8985–8989

    Google Scholar 

  24. Rill MS, Plet C, Thiel M, Staude I, vonFreymann G, Linden S, Wegener M (2008) Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat Mater 7:543–546

    Article  Google Scholar 

  25. Bückmann T, Stender N, Kadic M, Kaschke J, Frölich A, Kennerknecht T, Eberl C, Thiel M, Wegener M (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24:2710–2714

    Article  Google Scholar 

  26. Bückmann T, Thiel M, Kadic M, Schittny R, Wegener M (2014) An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat Commun 5:4130

    Article  Google Scholar 

  27. Milton GW, Cherkaev AV (1995) Which elasticity tensors are realizable? J Eng Mater Technol 117:483–493

    Article  Google Scholar 

  28. Kadic M, Bückmann T, Schittny R, Wegener M (2013) Metamaterials beyond electromagnetism. Rep Prog Phys 76:126501

    Article  Google Scholar 

  29. Fischer J, Wegener M (2013) Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 7:22–44

    Article  Google Scholar 

  30. Coenjarts CA, Ober CK (2004) Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers. Chem Mater 16:5556–5558

    Article  Google Scholar 

  31. Bhawalkar JD, He GS, Prasad PN (1996) Nonlinear multiphoton processes in organic and polymeric materials. Rep Prog Phys 59:1041–1070

    Article  Google Scholar 

  32. Lee K-S, Kim RH, Yang D-Y, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33:631–681

    Article  Google Scholar 

  33. Chan KF, Feng Z, Yang FR, Ishikawa A, Mei W (2003) High-resolution maskless lithography. J Microlith Microfab Microsyst 2:331–339

    Google Scholar 

  34. Jennes NJ, Hill RT, Hucknall A, Chilkoti A, Clark RL (2010) A versatile diffractive maskless lithography for single-shot and serial microfabrication. Opt Express 18:11754–11762

    Article  Google Scholar 

  35. Nielson R, Kaehr B, Shear JB (2009) Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small 5:120–125

    Article  Google Scholar 

  36. Habasaki S, Lee WC, Yoshida S, Takeuchi S (2016) Vertical flow lithography for fabrication of 3D anisotropic particles. Small 11:6391–6396

    Article  Google Scholar 

  37. Jennes NJ, Wulff KD, Johannes MS, Padgett MJ, Cole DG, Clark RL (2008) Three-dimensional parallel holographic micropatterning using a spatial light modulator. Opt Express 16:15942–15948

    Article  Google Scholar 

  38. Lawson JL, Jenness N, Wilson S, Clark RL (2013) Method of creating microscale prototypes using SLM based holographic lithography. SPIE 8612(86120L):1–8

    Google Scholar 

  39. Bertsch A, Jézéquel JY, André JC (1997) Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique. J Photochem Photobiol A Chem 107:275–281

    Article  Google Scholar 

  40. Ritschdorff ET, Nielson R, Shear JB (2012) Multi-focal multiphoton lithography. Lab Chip 12:867–871

    Article  Google Scholar 

  41. Bertsch A, Bernhard P, Renaud P (2001) Microstereolithography: concepts and applications. In: Emerging technologies and factory automation proceedings, vol 2, pp 289–298

    Google Scholar 

  42. Tormen M, Businaro L, Altissimo M, Romanato F, Cabrini S, Perennes F, Proietti R, Sun H-B, Kawata S, DiFabrizio E (2004) 3D patterning by means of nanoimprinting, X-ray and two-photon lithography. Microelectron Eng 73–74:535–541

    Article  Google Scholar 

  43. Wu C-Y, Owsley K, Di Carlo D (2015) Rapid software-based design and optical transient liquid molding of microparticles. Adv Mater 27:7970–7978

    Article  Google Scholar 

  44. Quick AS, Fischer J, Richter B, Pauloehrl T, Trouillet V, Wegener M, Barner-Kowollik C (2013) Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry. Macromol Rapid Commun 34:335–340

    Article  Google Scholar 

  45. Choi J-W, MacDonald E, Wicker R (2010) Multi-material microstereolithography. Int J Adv Manuf Technol 49:543–551

    Article  Google Scholar 

  46. Matsunaga YT, Morimoto Y, Takeuchi S (2010) Monodisperse cell-encapsulating peptide microgel beads for 3D cell culture. Langmuir 26:2645–2649

    Article  Google Scholar 

  47. Farrer RA, LaFratta CN, Li L, Praino J, Naughton MJ, Saleh BEA, Teich MC, Fourkas JT (2006) Selective functionalization of 3-D polymer microstructures. J Am Chem Soc 128:1796–1797

    Article  Google Scholar 

  48. Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Fröhlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt Lett 28:301–303

    Article  Google Scholar 

  49. Richter B, Pauloehrl T, Kaschke J, Fichtner D, Fischer J, Greiner AM, Wedlich D, Wegener M, Delaittre G, Barner-Kowollik C, Bastmeyer M (2013) Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry. Adv Mater 25:6117–6122

    Article  Google Scholar 

  50. Scheiwe AC, Frank SC, Autenrieth TJ, Bastmeyer M, Wegener M (2015) Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds. Biomaterials 44:186–194

    Article  Google Scholar 

  51. Greiner AM, Klein F, Gudzenko T, Richter B, Striebel T, Wundari BG, Autenrieth TJ, Wegener M, Franz CM, Bastmeyer M (2015) Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments. Biomaterials 69:121–132

    Article  Google Scholar 

  52. Panda P, Ali S, Lo E, Chung BG, Hatton TA, Khademhosseini A, Doyle PS (2008) Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8:1056–1061

    Article  Google Scholar 

  53. Hakimi N, Tsai SSH, Cheng C-H, Hwang DK (2014) One-step two-dimensional microfluidics-based synthesis of three-dimensional particles. Adv Mater 26:1393–1398

    Article  Google Scholar 

  54. Chung SE, Park W, Park H, Yu K, Park N, Kwon S (2007) Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl Phys Lett 91:041106

    Article  Google Scholar 

  55. Sochol RD, Heo YJ, Iwanaga S, Lei J, Wolf KT, Lu A, Kurihara M, Mori S, Serien D, Song L, Lin L, Takeuchi S (2013) Cells on arrays of microsprings: an approach to achieve triaxial control of substrate stiffness. In: MEMS 2013 Proc., pp 90–93

    Google Scholar 

  56. Morimoto Y, Mukouyama Y, Habasaki S, Takeuchi S (2016) Balloon Pump with Floating Valves for Portable Liquid Delivery. Micromachines 7:39

    Google Scholar 

  57. Mueller JB, Fischer J, Mayer F, Kadic M, Wegener M (2014) Polymerization kinetics in three-dimensional direct laser writing. Adv Mater 26:6566–6571

    Article  Google Scholar 

  58. Xiong Z, Zheng M-L, Dong X-Z, Chen W-Q, Jin F, Zhao Z-S, Duan X-M (2011) Asymmetric microstructure of hydrogel: two-photon microfabrication and stimuli-responsive behavior. Soft Matter 7:10353–10359

    Article  Google Scholar 

  59. Pitts JD, Campagnola PJ, Epling GA, Goodman SL (2000) Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release. Macromolecules 33:1514–1523

    Article  Google Scholar 

  60. Kaehr B, Jason BS (2008) Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proc Natl Acad Sci USA 105:8850–8854

    Article  Google Scholar 

  61. Basu S, Campagnola PJ (2004) Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multiphoton excitation. Biomacromolecules 5:572–579

    Article  Google Scholar 

  62. Serien D, Takeuchi S (2015) Fabrication of submicron proteinaceous structures by direct laser writing. Appl Phys Lett 107:013702

    Article  Google Scholar 

  63. Lee MR, Phang IY, Cui Y, Lee YH, Ling XY (2015) Shape-shifting 3D protein microstructures with programmable directionality via quantitative nanoscale stiffness modulation. Small 11:740–748

    Article  Google Scholar 

  64. Sie YD, Li Y-C, Chang N-S, Campagnola PJ, Chen S-J (2015) Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement. Biomed Opt Express 6:480–490

    Article  Google Scholar 

  65. Tanaka T, Ishikawa A, Kawata S (2006) Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl Phys Lett 88:081107

    Article  Google Scholar 

  66. Spivey EC, Ritschdorff ET, Connell JL, McLennon CA, Schmidt CE, Shear JB (2013) Multiphoton lithography of unconstrained three-dimensional protein microstructures. Adv Funct Mater 23:333–339

    Article  Google Scholar 

  67. Iosin M, Stephan O, Astilean S, Duperray A, Baldeck PL (2007) Microstructuration of protein matrices by laser-induced photochemistry. J Optoelectron Adv Mater 9:716–720

    Google Scholar 

  68. Sun Y-L, Dong W-F, Niu L-G, Jiang T, Liu D-X, Zhang L, Wang Y-S, Chen Q-D, Kim D-P, Sun H-B (2014) Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light Sci Appl 3, e129

    Article  Google Scholar 

  69. Guo Q, Xiao S, Aumann A, Jaeger M, Chakif M’B, Ghadiri R, Esen C, Ma M, Ostendorf A (2012) Using laser microfabrication to write conductive polymer/SWNTs nanocomposites. J Laser Micro/Nanoeng 7:44–48

    Article  Google Scholar 

  70. Lin C-Y, Hsu K-M, Huang H-C, Yeh T-F, Chang H-Y, Lien C-H, Teng H, Chen S-J (2015) Multiphoton fabrication of freeform polymer microstructures containing graphene oxide and reduced graphene oxide nanosheets. Opt Mater Express 5:218–226

    Article  Google Scholar 

  71. Bakhtina NA, Voigt A, MacKinnon N, Ahrens G, Gruetzner G, Korvink JG (2015) Novel ionic liquid—polymer composite and an approach for its patterning by conventional photolithography. In: MEMS 2015 Proc., pp 97–101

    Google Scholar 

  72. Yu T, Ober CK, Kuebler SM, Zhou W, Marder SR, Perry JW (2003) Chemically amplified positive resists for two-photon three-dimensional microfabrication. Adv Mater 15:517–521

    Article  Google Scholar 

  73. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132–134

    Article  Google Scholar 

  74. Fouassier JP, Morlet-Savary F, Lalevée J, Allonas X, Ley C (2010) Dyes as photoinitiators or photosensitizers of polymerization reactions. Materials 3:5130–5142

    Article  Google Scholar 

  75. Oster G (1954) Dye-sensitized photopolymerization. Nature 173:300–301

    Article  Google Scholar 

  76. Uppal N, Shiakolas PS (2008) Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics. J Micro/Nanolithogr MEMS MOEMS 7:043002

    Article  Google Scholar 

  77. Wang I, Bouriau M, Baldeck PL, Martineau C, Andraud C (2002) Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser. Opt Lett 27:1348–1350

    Article  Google Scholar 

  78. Sun H-B, Tanaka T, Kawata S (2002) Three-dimensional focal spots related to two-photon excitation. Appl Phys Lett 80:3673–3675

    Article  Google Scholar 

  79. Sun H-B, Takada K, Kim M-S, Lee K-S, Kawata S (2003) Scaling laws of voxels in two-photon photopolymerization nanofabrication. Appl Phys Lett 83:1104–1106

    Article  Google Scholar 

  80. Lim TW, Park SH, Yang DY, Kong HJ, Lee KS (2006) Direct single-layered fabrication of 3D concavo–convex patterns in nano-stereolithography. Appl Phys A 84:379–383

    Article  Google Scholar 

  81. Ikuta K, Hirowatari K (1993) Real three dimensional micro fabrication using stereo lithography and metal molding. In: MEMS’93 Proc., pp 42–47

    Google Scholar 

  82. Bertsch A, Sebastien J, Renaud P (2004) Microfabrication of ceramic components by microstereolithography. J Micromech Microeng 14:197–203

    Article  Google Scholar 

  83. Kurihara M, Heo YJ, Kuribayashi-Shigetomi K, Takeuchi S (2012) 3D laser lithography combined with parylene coating for the rapid fabrication of 3D microstructures. In: MEMS 2012 Proc., pp 196–199

    Google Scholar 

  84. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee I-YS, McCord-Maughon D, Qin J, Roeckel H, Rumi M, Wu X-L, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54

    Article  Google Scholar 

  85. Limaye AS, Rosen DW (2007) Process planning method for mask projection micro-stereolithography. Rapid Prototyp J 13:76–84

    Article  Google Scholar 

  86. Ikuta K, Maruo S, Kojima S (1998) New micro stereolithography for freely movable 3D micro structure—SuperIH process with submicron resolution. In: MEMS’98 Proc., pp 290–295

    Google Scholar 

  87. Dendukuri D, Doyle PS (2009) The synthesis and assembly of polymeric microparticles using microfluidics. Adv Mater 21:4071–4086

    Article  Google Scholar 

  88. Nisisako T, Ando T, Hatsuzawa T (2014) Capillary-assisted fabrication of biconcave polymeric microlenses from microfluidic ternary emulsion droplets. Small 10:5116–5125

    Google Scholar 

  89. Shepherd RF, Conrad JC, Rhodes SK, Link DR, Marquez M, Weitz DA, Lewis JA (2006) Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. Langmuir 22:8618–8622

    Article  Google Scholar 

  90. Lee WC, Heo YJ, Takeuchi S (2012) Wall-less liquid pathways formed with 3-dimensional microring arrays. Appl Phys Lett 101:114108

    Article  Google Scholar 

  91. Serien D, Takeuchi S (2015) Chemically responsive protein-photoresist hybrid actuator. In: MEMS 2015 Proc., pp 470–471

    Google Scholar 

  92. Lay CL, Lee MR, Lee HK, Phang IY, Ling XY (2015) Transformative two-dimensional array configurations by geometrical shape-shifting protein microstructures. ACS Nano 9:9708–9717

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Takeuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Serien, D., Morimoto, Y., Takeuchi, S. (2017). Photo-Induced Fabrication Technology for 3D Microdevices. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics