Skip to main content

Flexible Electronic Devices for Biomedical Applications

  • Chapter
  • First Online:

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Recent advances in material sciences and microfabrication technologies have enabled creating flexible electronic systems that are able to integrate with soft tissues with curvilinear and dynamic surfaces. Remarkable features of these flexible devices have opened an array of opportunities in controlling disease conditions, improving surgical procedures, and continuous health monitoring. The overarching goal of this chapter is to provide an overview of current advances in the field of flexible electronics with emphasize on biomedical applications. We will primarily discuss the fabrication strategies and materials for the development of physical-, chemical-, and biosensors. In the second part, the emerging applications of flexible electronics in wound healing, wearable electronics, implantable devices, and surgical tools as well as point-of-care diagnostic devices, will be explored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crabb R, Treble F (1967) Thin silicon solar cells for large flexible arrays. Nature 213: 1223–1224

    Article  Google Scholar 

  2. Shahrjerdi D et al (2013) Flexible solar cells: ultralight high‐efficiency flexible InGaP/(In) GaAs tandem solar cells on plastic (Adv. Energy Mater. 5/2013). Adv Energy Mater 3(5):542

    Article  Google Scholar 

  3. Romeo A et al (2006) High-efficiency flexible CdTe solar cells on polymer substrates. Sol Energy Mater Sol Cells 90(18):3407–3415

    Article  Google Scholar 

  4. Nathan A et al (2012) Flexible electronics: the next ubiquitous platform. Proc IEEE 100(Special Centennial Issue):1486–1517

    Article  Google Scholar 

  5. Qi Y et al (2010) Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett 10(2):524–528

    Article  Google Scholar 

  6. Wang ZL (2010) Toward self-powered sensor networks. Nano Today 5(6):512–514

    Article  Google Scholar 

  7. Manekkathodi A et al (2010) Direct growth of aligned zinc oxide nanorods on paper substrates for low‐cost flexible electronics. Adv Mater 22(36):4059–4063

    Article  Google Scholar 

  8. Lipomi DJ et al (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792

    Article  Google Scholar 

  9. Rogers JA et al (2001) Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci 98(9):4835–4840

    Article  Google Scholar 

  10. Someya T et al (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102(35):12321–12325

    Article  Google Scholar 

  11. Someya T et al (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 101(27):9966–9970

    Article  Google Scholar 

  12. Pang C et al (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11(9):795–801

    Article  Google Scholar 

  13. Kim D-H et al (2012) Flexible and stretchable electronics for biointegrated devices. Annu Rev Biomed Eng 14:113–128

    Article  Google Scholar 

  14. Kim D-H et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517

    Article  Google Scholar 

  15. Kim D-H et al (2011) Epidermal electronics. Science 333(6044):838–843

    Article  Google Scholar 

  16. Kim DH et al (2012) Thin, flexible sensors and actuators as ‘instrumented’ surgical sutures for targeted wound monitoring and therapy. Small 8(21):3263–3268

    Article  Google Scholar 

  17. Kim T et al (2012) Large-scale graphene micropatterns via self-assembly-mediated process for flexible device application. Nano Lett 12(2):743–748

    Article  Google Scholar 

  18. Lee J-Y et al (2009) Flexible electrochemical biosensors based on O2 plasma functionalized MWCNT. Thin Solid Films 517(14):3883–3887

    Article  Google Scholar 

  19. Klinker L et al (2015) Balloon catheters with integrated stretchable electronics for electrical stimulation, ablation and blood flow monitoring. Extreme Mech Lett 3:45–54

    Article  Google Scholar 

  20. Santini JT Jr, Hutchinson CE (2003) Implantable drug delivery stents. Google Patents

    Google Scholar 

  21. Bagherifard S et al (2015) Dermal patch with integrated flexible heater for on demand drug delivery. Adv Healthcare Mater 5(1):175–184

    Article  Google Scholar 

  22. Choi WM et al (2007) Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett 7(6):1655–1663

    Article  Google Scholar 

  23. Kim D-H et al (2008) Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci 105(48):18675–18680

    Article  Google Scholar 

  24. Huang K, Peumans P (2006) Stretchable silicon sensor networks for structural health monitoring. In: Smart structures and materials. International Society for Optics and Photonics

    Google Scholar 

  25. Hasan M et al (2010) Low temperature aluminum oxide gate dielectric on plastic film for flexible device application. Jpn J Appl Phys 49(5S1):05EA01

    Google Scholar 

  26. Duan X et al (2003) High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425(6955):274–278

    Article  Google Scholar 

  27. McAlpine MC et al (2003) High-performance nanowire electronics and photonics on glass and plastic substrates. Nano Lett 3(11):1531–1535

    Article  Google Scholar 

  28. Gelinck GH et al (2004) Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3(2):106–110

    Article  Google Scholar 

  29. Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578

    Article  Google Scholar 

  30. Ahn J-H et al (2006) Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314(5806):1754–1757

    Article  Google Scholar 

  31. Hines D et al (2007) Transfer printing methods for the fabrication of flexible organic electronics. J Appl Phys 101(2):024503

    Article  Google Scholar 

  32. Najafabadi AH et al (2014) Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics. Adv Mater 26(33):5823–5830

    Article  Google Scholar 

  33. Huang D et al (2003) Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150(7):G412–G417

    Article  Google Scholar 

  34. Fan F-R et al (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12(6):3109–3114

    Article  Google Scholar 

  35. Mannsfeld SC et al (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9(10):859–864

    Article  Google Scholar 

  36. Muth JT et al (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26(36):6307–6312

    Article  Google Scholar 

  37. Zhu S et al (2013) Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 23(18):2308–2314

    Article  Google Scholar 

  38. Boley JW et al (2014) Direct writing of gallium‐indium alloy for stretchable electronics. Adv Funct Mater 24(23):3501–3507

    Article  Google Scholar 

  39. Yamada T et al (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6(5):296–301

    Article  Google Scholar 

  40. Hammock ML et al (2013) 25th anniversary article: the evolution of electronic skin (E‐Skin): a brief history, design considerations, and recent progress. Adv Mater 25(42):5997–6038

    Article  Google Scholar 

  41. Takei K et al (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9(10):821–826

    Article  Google Scholar 

  42. Niu X et al (2007) Characterizing and patterning of PDMS-based conducting composites. Adv Mater-Deerfield Beach Then Weinheim- 19(18):2682

    Article  Google Scholar 

  43. Sun JY et al (2014) Ionic skin. Adv Mater 26(45):7608–7614

    Article  Google Scholar 

  44. Chen B et al (2014) Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl Mater Interfaces 6(10):7840–7845

    Article  Google Scholar 

  45. Krebs FC, Fyenbo J, Jørgensen M (2010) Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J Mater Chem 20(41):8994–9001

    Article  Google Scholar 

  46. Ladd C et al (2013) 3D printing of free standing liquid metal microstructures. Adv Mater 25(36):5081–5085

    Article  Google Scholar 

  47. Park Y-L et al (2010) Hyperelastic pressure sensing with a liquid-embedded elastomer. J Micromech Microeng 20(12):125029

    Article  Google Scholar 

  48. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327(5973):1603–1607

    Article  Google Scholar 

  49. Tao H et al (2011) Metamaterials on paper as a sensing platform. Adv Mater 23(28):3197–3201

    Article  Google Scholar 

  50. Hyun WJ, Park OO, Chin BD (2013) Foldable graphene electronic circuits based on paper substrates. Adv Mater 25(34):4729–4734

    Article  Google Scholar 

  51. Felmet K, Loo Y-L, Sun Y (2004) Patterning conductive copper by nanotransfer printing. Appl Phys Lett 85(15):3316–3318

    Article  Google Scholar 

  52. Hwang S-W et al (2012) A physically transient form of silicon electronics. Science 337(6102):1640–1644

    Article  Google Scholar 

  53. Sekitani T et al (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9(12):1015–1022

    Article  Google Scholar 

  54. Park M et al (2013) Micropatterned stretchable circuit and strain sensor fabricated by lithography on an electrospun nanofiber mat. ACS Appl Mater Interfaces 5(17):8766–8771

    Article  Google Scholar 

  55. Bettinger CJ, Bao Z (2010) Organic thin‐film transistors fabricated on resorbable biomaterial substrates. Adv Mater 22(5):651–655

    Article  Google Scholar 

  56. Tamayol A et al (2013) Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv 31(5):669–687

    Article  Google Scholar 

  57. Akbari A, Akbari M, Hill RJ (2013) Effective thermal conductivity of two-dimensional anisotropic two-phase media. Int J Heat Mass Transf 63:41–50

    Article  Google Scholar 

  58. Collins A, Cosh J (1970) Temperature and biochemical studies of joint inflammation. A preliminary investigation. Ann Rheum Dis 29(4):386

    Article  Google Scholar 

  59. Brown DL (1999) Device and method for locating inflamed plaque in an artery. Google Patents

    Google Scholar 

  60. Savla U, Olson LE, Waters CM (2004) Mathematical modeling of airway epithelial wound closure during cyclic mechanical strain. J Appl Physiol 96(2):566–574

    Article  Google Scholar 

  61. Lichtenwalner DJ, Hydrick AE, Kingon AI (2007) Flexible thin film temperature and strain sensor array utilizing a novel sensing concept. Sens Actuators A Phys 135(2):593–597

    Article  Google Scholar 

  62. Briand D et al (2011) Making environmental sensors on plastic foil. Mater Today 14(9): 416–423

    Article  Google Scholar 

  63. Xiao SY et al (2008) A novel fabrication process of MEMS devices on polyimide flexible substrates. Microelectron Eng 85(2):452–457

    Article  Google Scholar 

  64. Xiao S-Y et al (2005) A temperature sensor array based on flexible MEMS skin technology [J]. Opt Precis Eng 6:008

    Google Scholar 

  65. Sibinski M, Jakubowska M, Sloma M (2010) Flexible temperature sensors on fibers. Sensors 10(9):7934–7946

    Article  Google Scholar 

  66. Shih W-P et al (2010) Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sensors 10(4):3597–3610

    Article  Google Scholar 

  67. Karimov KS, Chani MTS, Khalid FA (2011) Carbon nanotubes film based temperature sensors. Physica E Low-dimensional Syst Nanostruct 43(9):1701–1703

    Article  Google Scholar 

  68. Karimov KS et al (2015) Temperature sensor based on composite film of vanadium complex (VO2 (3-fl)) and CNT. J Semicond 36(7):073004

    Article  Google Scholar 

  69. Frutiger A et al (2015) Capacitive soft strain sensors via Multicore–Shell fiber printing. Adv Mater 27(15):2440–2446

    Article  Google Scholar 

  70. Ridzuan NA, Masuda S, Miki N (2012) Flexible capacitive sensor encapsulating liquids as dielectric with a largely deformable polymer membrane. Micro Nano Lett 7(12):1193–1196

    Article  Google Scholar 

  71. Sekitani T et al (2005) Bending experiment on pentacene field-effect transistors on plastic films. Appl Phys Lett 86(7):73511–74100

    Article  Google Scholar 

  72. Sekitani T et al (2009) Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater 8(6):494–499

    Article  Google Scholar 

  73. Windmiller JR, Wang J (2013) Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25(1):29–46

    Article  Google Scholar 

  74. Cai J et al (2009) Flexible thick-film electrochemical sensors: impact of mechanical bending and stress on the electrochemical behavior. Sens Actuators B Chem 137(1):379–385

    Article  Google Scholar 

  75. Shao Y et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036

    Article  Google Scholar 

  76. Boukhvalov D, Katsnelson M (2009) Chemical functionalization of graphene. J Phys Condens Matter 21(34):344205

    Article  Google Scholar 

  77. Wang Y et al (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798

    Article  Google Scholar 

  78. Bagri A et al (2010) Stability and formation mechanisms of carbonyl-and hydroxyl-decorated holes in graphene oxide. J Phys Chem C 114(28):12053–12061

    Article  Google Scholar 

  79. Gethin G (2007) The significance of surface pH in chronic wounds. Wounds UK 3(3):52

    Google Scholar 

  80. Huang X et al (2014) Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10(15):3083–3090

    Article  Google Scholar 

  81. Tamayol A et al Flexible pH-sensing hydrogel fibers for epidermal applications (5):711–719

    Google Scholar 

  82. Cramer W, Butler W (1969) Potentiometric titration of the fluorescence yield of spinach chloroplasts. Biochim Biophys Acta Bioenergetics 172(3):503–510

    Article  Google Scholar 

  83. Huang W-D et al (2011) A flexible pH sensor based on the iridium oxide sensing film. Sensors Actuators A Phys 169(1):1–11

    Article  Google Scholar 

  84. Kurzweil P (2009) Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook. Sensors 9(6):4955–4985

    Article  Google Scholar 

  85. Dargaville TR et al (2013) Sensors and imaging for wound healing: a review. Biosens Bioelectron 41:30–42

    Article  Google Scholar 

  86. Sharp D (2013) Printed composite electrodes for in-situ wound pH monitoring. Biosens Bioelectron 50:399–405

    Article  Google Scholar 

  87. Kaempgen M, Roth S (2006) Transparent and flexible carbon nanotube/polyaniline pH sensors. J Electroanal Chem 586(1):72–76

    Article  Google Scholar 

  88. Ferrer‐Anglada N, Kaempgen M, Roth S (2006) Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline pH sensors. Phys Status Solidi B 243(13):3519–3523

    Article  Google Scholar 

  89. Korostynska O et al (2007) Review on state-of-the-art in polymer based pH sensors. Sensors 7(12):3027–3042

    Article  Google Scholar 

  90. Madou MJ, Morrison SR (2012) Chemical sensing with solid state devices. Elsevier, Amsterdam

    Google Scholar 

  91. Chuang M-C et al (2010) Flexible thick-film glucose biosensor: influence of mechanical bending on the performance. Talanta 81(1):15–19

    Article  Google Scholar 

  92. Mitsubayashi K et al (2003) Optical-transparent and flexible glucose sensor with ITO electrode. Biosens Bioelectron 19(1):67–71

    Article  Google Scholar 

  93. Mani V, Devadas B, Chen S-M (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309–315

    Article  Google Scholar 

  94. Urban G et al (1992) Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications. Biosens Bioelectron 7(10):733–739

    Article  Google Scholar 

  95. Kagie A et al (2008) Flexible rolled thick‐film miniaturized flow‐cell for minimally invasive amperometric sensing. Electroanalysis 20(14):1610–1614

    Article  Google Scholar 

  96. Morris D et al (2009) Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sens Actuators B Chem 139(1):231–236

    Article  Google Scholar 

  97. Yang Y-L et al (2010) Thick-film textile-based amperometric sensors and biosensors. Analyst 135(6):1230–1234

    Article  Google Scholar 

  98. Li C, Han J, Ahn CH (2007) Flexible biosensors on spirally rolled micro tube for cardiovascular in vivo monitoring. Biosens Bioelectron 22(9):1988–1993

    Article  Google Scholar 

  99. Li C et al (2008) A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter. Biomed Microdevices 10(5):671–679

    Article  Google Scholar 

  100. Wang J (2004) Microchip devices for detecting terrorist weapons. Anal Chim Acta 507(1):3–10

    Article  Google Scholar 

  101. Wang J (2007) Electrochemical sensing of explosives. In: Counterterrorist detection techniques of explosives. pp 91–108

    Google Scholar 

  102. Chuang MC et al (2010) Textile‐based electrochemical sensing: effect of fabric substrate and detection of nitroaromatic explosives. Electroanalysis 22(21):2511–2518

    Article  Google Scholar 

  103. Windmiller JR et al (2011) Bioelectronic system for the control and readout of enzyme logic gates. Sens Actuators B Chem 155(1):206–213

    Article  Google Scholar 

  104. Sen CK et al (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771

    Article  Google Scholar 

  105. Greer N et al (2013) Advanced wound care therapies for nonhealing diabetic, venous, and arterial ulcers: a systematic review. Ann Intern Med 159(8):532–542

    Article  Google Scholar 

  106. Bryant RA, Nix DP (2012) Acute & chronic wounds: current management concepts. Elsevier Health Sciences, St. Louis

    Google Scholar 

  107. McColl D, Cartlidge B, Connolly P (2007) Real-time monitoring of moisture levels in wound dressings in vitro: an experimental study. Int J Surg 5(5):316–322

    Article  Google Scholar 

  108. Hattori Y et al (2014) Multifunctional skin‐like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv Healthcare Mater 3(10):1597–1607

    Article  Google Scholar 

  109. Akbari M et al Textile technologies and tissue engineering: a path toward organ weaving, Adv. Healthcare Mater. 2016, (5): 751–766

    Google Scholar 

  110. Akbari M et al (2014) Composite living fibers for creating tissue constructs using textile techniques. Adv Funct Mater 24(26):4060–4067

    Article  Google Scholar 

  111. Jones A, Vaughan D (2005) Hydrogel dressings in the management of a variety of wound types: a review. J Orthop Nurs 9(Supplement 1):S1–S11

    Article  Google Scholar 

  112. Annabi N et al (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26(1):85–124

    Article  Google Scholar 

  113. Ortiz-Catalan M et al (2012) On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online 11:33

    Article  Google Scholar 

  114. Viventi J et al (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2(24):24ra22

    Article  Google Scholar 

  115. Patil A et al (2008) Issue and challenges facing rechargeable thin film lithium batteries. Mater Res Bull 43(8):1913–1942

    Article  Google Scholar 

  116. Ning H et al (2015) Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries. Proc Natl Acad Sci 112(21):6573–6578

    Article  Google Scholar 

  117. Wang C et al (2011) Buckled, stretchable polypyrrole electrodes for battery applications. Adv Mater 23(31):3580–3584

    Article  Google Scholar 

  118. Song Z et al (2014) Origami lithium-ion batteries. Nat Commun 5, 3140

    Google Scholar 

  119. Kim D et al (2013) Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 7(9):7975–7982

    Article  Google Scholar 

  120. Xu S et al (2013) Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 4:1543

    Article  Google Scholar 

  121. Slepian MJ, Ghaffari R, Rogers JA (2011) Multifunctional balloon catheters of the future. Interv Cardiol 3(4):417–419

    Article  Google Scholar 

  122. Lee SP et al (2015) Catheter-based systems with integrated stretchable sensors and conductors in cardiac electrophysiology. Proc IEEE 103(4):682–689

    Article  Google Scholar 

  123. Hawkins BM, Hennebry TA (2011) Local paclitaxel delivery for treatment of peripheral arterial disease. Circ Cardiovasc Interv 4(3):297–302

    Article  Google Scholar 

  124. Patel S et al (2012) A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil 9(12):1–17

    Google Scholar 

  125. Heldberg BE et al (2015) Using wearable sensors for semiology-independent seizure detection-towards ambulatory monitoring of epilepsy. In: Engineering in medicine and biology society (EMBC), 2015 37th annual international conference of the IEEE

    Google Scholar 

  126. Bawazer LA (2014) Bio focus: healthcare-on-a-patch: responsive wearable materials. MRS Bull 39(06):477

    Article  Google Scholar 

  127. Paradiso R, Loriga G, Taccini N (2005) A wearable health care system based on knitted integrated sensors. IEEE Trans Inf Technol Biomed 9(3):337–344

    Article  Google Scholar 

  128. Martin T, Jovanov E, Raskovic D (2000) Issues in wearable computing for medical monitoring applications: a case study of a wearable ECG monitoring device. In: The fourth international symposium on wearable computers, IEEE

    Google Scholar 

  129. Anliker U et al (2004) AMON: a wearable multiparameter medical monitoring and alert system. IEEE Trans Inf Technol Biomed 8(4):415–427

    Article  Google Scholar 

  130. Pandian P et al (2008) Smart Vest: wearable multi-parameter remote physiological monitoring system. Med Eng Phys 30(4):466–477

    Article  Google Scholar 

  131. Leonov V, Vullers RJ (2009) Wearable electronics self-powered by using human body heat: the state of the art and the perspective. J Renewable Sustainable Energy 1(6):062701

    Article  Google Scholar 

  132. Jung S, Ji T, Varadan VK (2006) Point-of-care temperature and respiration monitoring sensors for smart fabric applications. Smart Mater Struct 15(6):1872

    Article  Google Scholar 

  133. Yamada T et al (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6(5):296–301

    Article  Google Scholar 

  134. Bae WG et al (2013) Enhanced skin adhesive patch with Modulus‐Tunable composite micropillars. Adv Healthcare Mater 2(1):109–113

    Article  Google Scholar 

  135. Mostafalu P et al (2015) Wireless flexible smart bandage for continuous monitoring of wound oxygenation. IEEE Trans Biomed Circuits Syst 9(5):670–677

    Article  Google Scholar 

  136. Mostafalu P et al (2014) Wireless flexible smart bandage for continuous monitoring of wound oxygenation. In: 2014 IEEE biomedical circuits and systems conference (BioCAS), IEEE

    Google Scholar 

  137. Malzahn K et al (2011) Wearable electrochemical sensors for in situ analysis in marine environments. Analyst 136(14):2912–2917

    Article  Google Scholar 

  138. Schwartz G et al (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859

    Article  Google Scholar 

  139. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134

    Article  Google Scholar 

  140. Xiao F et al (2013) Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosens Bioelectron 41:417–423

    Article  Google Scholar 

  141. Chang Y-T et al (2013) Flexible direct-growth CNT biosensors. Biosens Bioelectron 41:898–902

    Article  Google Scholar 

  142. Zan X et al (2013) Freestanding graphene paper decorated with 2D-assembly of Au@ Pt nanoparticles as flexible biosensors to monitor live cell secretion of nitric oxide. Biosens Bioelectron 49:71–78

    Article  Google Scholar 

  143. Reddy A et al (2010) Printed electrochemical based biosensors on flexible substrates. In: 2010 IEEE sensors, IEEE

    Google Scholar 

  144. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med 349(18):1731–1737

    Article  Google Scholar 

  145. Labroo P, Cui Y (2013) Flexible graphene bio-nanosensor for lactate. Biosens Bioelectron 41:852–856

    Article  Google Scholar 

  146. Kwon OS et al (2012) Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6(2):1486–1493

    Article  Google Scholar 

  147. Sillanpaa H et al (2014) Inkjet printed wireless biosensors on stretchable substrate. In: 2014 international conference on electronics packaging (ICEP), IEEE

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Akbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mostafalu, P., Nezhad, A.S., Nikkhah, M., Akbari, M. (2017). Flexible Electronic Devices for Biomedical Applications. In: Zhang, D., Wei, B. (eds) Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-32180-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32180-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32178-3

  • Online ISBN: 978-3-319-32180-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics