Skip to main content

The Unknotting Problem

  • Chapter
  • First Online:
Open Problems in Mathematics

Abstract

This paper tells the story of knots and the search to detect their knottedness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Altshuler and L. Friedel, Vassiliev knot invariants and Chern-Simons perturbation theory to all orders. Comm. Math. Phys. 187 (1997), no. 2, 261–287.

    Article  MathSciNet  Google Scholar 

  2. M.F. Atiyah, Geometry of Yang-Mills Fields, Accademia Nazionale dei Lincei Scuola Superiore Lezioni Fermiare, Pisa,1979.

    MATH  Google Scholar 

  3. M.F. Atiyah, The Geometry and Physics of Knots, Cambridge University Press, 1990.

    Book  MATH  Google Scholar 

  4. D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423–472.

    Article  MathSciNet  MATH  Google Scholar 

  5. R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press, 1982.

    MATH  Google Scholar 

  6. J. Birman and X.S. Lin, Knot polynomials and Vassiliev’s invariants. Invent. Math. 111 (1993), no. 2, 225–270.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Cartier, Construction combinatoire des invariants de Vassiliev - Kontsevich des noeuds, C. R. Acad. Sci. Paris 316, Série I, (1993), pp. 1205–1210.

    Google Scholar 

  8. J.H. Conway, (private conversation)

    Google Scholar 

  9. J.H. Conway, An enumeration of knots and links and some of their algebraic properties, in Computational Problems in Abstract Algebra, Pergammon Press, N.Y., (1970), pp. 329–358.

    Google Scholar 

  10. I.A. Dynnikov, Arc presentations of links - Monotonic simplification, Fund. Math. 190 (2006), 29–76. www.arxiv.org/math.GT/0208153 v2 8 Sept 2003.

    Google Scholar 

  11. S. Garoufalidis, Applications of TQFT to invariants in low dimensional topology, (preprint 1993).

    Google Scholar 

  12. D.S. Freed and R.E. Gompf, Computer calculation of Witten’s three-manifold invariant, Commun. Math. Phys., No. 141, (1991), pp. 79–117.

    Google Scholar 

  13. L.C. Jeffrey, Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semi-classical approximation, Commun. Math. Phys., No. 147, (1992), pp. 563–604.

    Google Scholar 

  14. V.F.R. Jones, A polynomial invariant of links via von Neumann algebras, Bull. Amer. Math. Soc., 1985, No. 129, pp. 103–112.

    Google Scholar 

  15. V.F.R.Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math.,Vol.126, 1987, pp. 335–338.

    Article  MathSciNet  MATH  Google Scholar 

  16. V.F.R.Jones, On knot invariants related to some statistical mechanics models, Pacific J. Math., Vol. 137, no. 2,1989, pp. 311–334.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kronheimer, P. B.; Mrowka, T. S. Khovanov homology is an unknot-detector. Publ. Math. Inst. Hautes tudes Sci. No. 113 (2011), 97–208. math.GT.arXiv:1005.4346.

    Google Scholar 

  18. L.H. Kauffman, The Conway polynomial, Topology, 20 (1980), pp. 101–108.

    Article  MathSciNet  MATH  Google Scholar 

  19. L.H. Kauffman, Formal Knot Theory, Princeton University Press, Lecture Notes Series 30 (1983).

    Google Scholar 

  20. L.H. Kauffman, On Knots, Annals Study No. 115, Princeton University Press (1987)

    Google Scholar 

  21. L.H. Kauffman, State Models and the Jones Polynomial, Topology,Vol. 26, 1987,pp. 395–407.

    Article  MathSciNet  MATH  Google Scholar 

  22. L.H. Kauffman, Statistical mechanics and the Jones polynomial, AMS Contemp. Math. Series, Vol. 78,1989, pp. 263–297.

    Article  MathSciNet  Google Scholar 

  23. L.H. Kauffman, Map coloring, q-deformed spin networks, and Turaev-Viro invariants for 3-manifolds, Int. J. of Modern Phys. B, Vol. 6, Nos. 11, 12 (1992), pp. 1765–1794.

    Google Scholar 

  24. L.H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc., Vol. 318. No. 2,1990, pp. 417–471.

    Article  MathSciNet  MATH  Google Scholar 

  25. L.H. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly, Vol. 95, No.3, March 1988. pp 195–242.

    Google Scholar 

  26. L.H. Kauffman and P. Vogel, Link polynomials and a graphical calculus, Journal of Knot Theory and Its Ramifications, Vol. 1, No. 1, March 1992.

    Google Scholar 

  27. L.H. Kauffman, “Knots and Physics”, World Scientific, Singapore/New Jersey/London/Hong Kong, 1991, 1994, 2001.

    MathSciNet  Google Scholar 

  28. A. Henrich and L. H. Kauffman, Unknotting Unknots, American Mathematical Monthly, Vol. 121, May 2014, pp. 379–390.

    Google Scholar 

  29. L.H. Kauffman, Gauss Codes, quantum groups and ribbon Hopf algebras, Reviews in Mathematical Physics 5 (1993), 735–773. (Reprinted in [27], 551–596.

    Google Scholar 

  30. L.H. Kauffman, Knots and Diagrams, in “Lectures at Knots 96”, ed. by Shin’ichi Suzuki (1997), World Scientific Pub. Co. pp. 123–194.

    Google Scholar 

  31. L.H. Kauffman and S. L. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3- Manifolds, Annals of Mathematics Study 114, Princeton Univ. Press,1994.

    Book  MATH  Google Scholar 

  32. L.H. Kauffman, Functional Integration and the theory of knots, J. Math. Physics, Vol. 36 (5), May 1995, pp. 2402–2429.

    Google Scholar 

  33. G. Hemion, “The Classification of Knots and 3-Dimensional Spaces”, Oxford University Press, 1992.

    MATH  Google Scholar 

  34. M. Lackenby, A polynomial upper bound on Reidemeister moves. Ann. of Math. (2) 182 (2015), no. 2, 491–564.

    Article  MathSciNet  MATH  Google Scholar 

  35. W.B.R. Lickorish, The Temperley-Lieb Algebra and 3-manifold invariants, Journal of Knot Theory and Its Ramifications, Vol. 2,1993, pp. 171–194.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Mathias, Ph.D. Thesis, University of Illinois at Chicago, 1996.

    Google Scholar 

  37. Michael Polyak and Oleg Viro, Gauss diagram formulas for Vassiliev invariants, Intl. Math. Res. Notices, No. 11, (1994) pp. 445–453.

    Google Scholar 

  38. P. Cotta-Ramusino, E. Guadagnini, M. Martellini, M. Mintchev, Quantum field theory and link invariants, (preprint 1990)

    Google Scholar 

  39. K. Reidemeister, Knotentheorie, Chelsea Pub. Co., New York, 1948, Copyright 1932, Julius Springer, Berlin.

    Google Scholar 

  40. L. Rozansky, Witten’s invariant of 3-dimensional manifolds: loop expansion and surgery calculus, In Knots and Applications, edited by L. Kauffman, (1995), World Scientific Pub. Co.

    Google Scholar 

  41. N.Y. Reshetikhin and V. Turaev, Invariants of Three-Manifolds via link polynomials and quantum groups, Invent. Math.,Vol.103,1991, pp. 547–597.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Siebenmann and F. Bonahon, (Unpublished Manuscript)

    Google Scholar 

  43. L. Smolin, Link polynomials and critical points of the Chern-Simons path integrals, Mod. Phys. Lett. A, Vol. 4,No. 12, 1989, pp. 1091–1112.

    Article  MathSciNet  Google Scholar 

  44. L. Smolin,The physics of spin networks. The geometric universe (Oxford, 1996), 291–304, Oxford Univ. Press,n Oxford, 1998.

    Google Scholar 

  45. T. Stanford, Finite-type invariants of knots, links and graphs, (preprint 1992).

    Google Scholar 

  46. H. Trotter, Non-invertible knots exist, Topology,Vol.2,1964,pp. 275–280.

    Article  MathSciNet  MATH  Google Scholar 

  47. M.B. Thistlethwaite, Links with trivial Jones polynomial, JKTR, Vol. 10, No. 4 (2001), 641–643.

    MathSciNet  MATH  Google Scholar 

  48. S. Eliahou, L. Kauffman and M.B. Thistlethwaite, Infinite families of links with trivial Jones polynomial, Topology, 42, pp. 155–169.

    Google Scholar 

  49. V.G. Turaev and H. Wenzl, Quantum invariants of 3-manifolds associated with classical simple Lie algebras, International J. of Math., Vol. 4, No. 2,1993, pp. 323–358.

    Article  MathSciNet  MATH  Google Scholar 

  50. V. Vassiliev, Cohomology of knot spaces, In Theory of Singularities and Its Applications, V.I. Arnold, ed., Amer. Math. Soc.,1990, pp. 23–69.

    Google Scholar 

  51. K. Walker, On Witten’s 3-Manifold Invariants, (preprint 1991).

    Google Scholar 

  52. Edward Witten, Quantum field Theory and the Jones Polynomial, Commun. Math. Phys.,vol. 121, 1989, pp. 351–399.

    Google Scholar 

  53. J. W. Aexander. Topological invariants of knots and links. Trans. Amer. Math. Soc., 20:275–306, 1923.

    MathSciNet  Google Scholar 

  54. J. Birman and M. Hirsch. A new algorithm for recognizing the unknot. Geom. Top., 2:175–220, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Birman and J. Moody. Obstructions to trivializing a knot. Israel J. Math., 142:125–162, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Goeritz. Bemerkungen zur knotentheorie. Abh. Math. Sem. Univ. Hamburg, 18:201–210, 1997.

    MathSciNet  MATH  Google Scholar 

  57. J. Hass and J. Lagarias. The number of Reidemeister moves needed for unknotting. J. Amer. Math. Soc, 14:399–428, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  58. L. Kauffman. Knots and physics. In Series on Knots and Everything, volume 1, page 18. World Scientific Pub. Co., 1991, 1993, 2001.

    Google Scholar 

  59. L. Kauffman. Knot diagrammatics. In W. Menasco and M. Thistlethwaite, editors, The Handbook of Knot Theory, chapter 6, pages 233–318. Elsevier, 2005.

    Google Scholar 

  60. L. Kauffman and S. Lambropoulou. Hard unknots and collapsing tangles. In L. Kauffman, S. Lambropoulou, S. Jablan, and J. H. Przytycki, editors, Introductory Lectures on Knot Theory – Selected Lectures presented at the Advanced School and Conference on Knot Theory and its Applications to Physics and Biology, ICTP, Trieste, Italy, 11–29 May 2009. World Scientific Pub. Co., 2011.

    Google Scholar 

  61. L. Kaufman and S. Lomonaco. Quantum knots and mosaics. J. Quantum Info. Processing, 7:85–115, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  62. C. Manolescu, P. Ozsvath, Z. Szabo, and D. Thurston. Combinatorial link floer homology. Geom.Top., 11:2339–2412, 2007.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis H. Kauffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kauffman, L.H. (2016). The Unknotting Problem. In: Nash, Jr., J., Rassias, M. (eds) Open Problems in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-32162-2_8

Download citation

Publish with us

Policies and ethics