Skip to main content

An Essay on the Riemann Hypothesis

  • Chapter
  • First Online:
Book cover Open Problems in Mathematics

Abstract

The Riemann hypothesis is, and will hopefully remain for a long time, a great motivation to uncover and explore new parts of the mathematical world. After reviewing its impact on the development of algebraic geometry we discuss three strategies, working concretely at the level of the explicit formulas. The first strategy is “analytic” and is based on Riemannian spaces and Selberg’s work on the trace formula and its comparison with the explicit formulas. The second is based on algebraic geometry and the Riemann-Roch theorem. We establish a framework in which one can transpose many of the ingredients of the Weil proof as reformulated by Mattuck, Tate and Grothendieck. This framework is elaborate and involves noncommutative geometry, Grothendieck toposes and tropical geometry. We point out the remaining difficulties and show that RH gives a strong motivation to develop algebraic geometry in the emerging world of characteristic one. Finally we briefly discuss a third strategy based on the development of a suitable “Weil cohomology”, the role of Segal’s Γ-rings and of topological cyclic homology as a model for “absolute algebra” and as a cohomological tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Similar counting functions were already present in Chebyshev’s work.

  2. 2.

    More precisely Riemann writes \(\sum _{\mathfrak{R}(\alpha )>0}\left (\mathrm{Li}(x^{\frac{1} {2} +\alpha i}) +\mathrm{ Li}(x^{\frac{1} {2} -\alpha i})\right )\) instead of \(\sum _{\rho }\mathrm{Li}(x^{\rho })\) using the symmetry ρ → 1 −ρ provided by the functional equation, to perform the summation.

  3. 3.

    See [44, Chap. VII] for detailed support to Selberg’s comment.

  4. 4.

    My warmest thanks to Michael Th. Rassias for the communication.

  5. 5.

    One of the topics in which John Nash made fundamental contributions.

  6. 6.

    And at which the value of F(u) is defined as the average of the right and left limits there.

  7. 7.

    Where the argument of r n is either 0 or \(-\pi /2\).

  8. 8.

    I am grateful to S. Gaubert for pointing out this early occurrence.

  9. 9.

    As mentioned above, this result was obtained already for matrices in 1962 by R. Cuninghame-Green.

  10. 10.

    As seen when using \(\mathbb{R}_{\mathrm{max}}\) as the target of a valuation.

  11. 11.

    Where 0 is the base point.

  12. 12.

    Equivalently \(\mathbb{S}\)-algebras.

  13. 13.

    A measurable group homomorphism from \(\mathbb{Z}_{p}^{\times }\) to \(\mathbb{C}^{\times }\) cannot be injective.

  14. 14.

    In 2012 I had to give, in the French academy of Sciences, the talk devoted to the 200th anniversary of the birth of Evariste Galois. On that occasion I read for the n + 1th time the book of his collected works and was struck by the pertinence of the above quote in the analogy with L-functions. In the case of function fields one is dealing with Weil numbers and one knows a lot on their Galois theory using results such as those of Honda and Tate cf. [94].

References

  1. J. Arthur, An introduction to the trace formula. Harmonic analysis, the trace formula, and Shimura varieties, 1-263, Clay Math. Proc., 4, Amer. Math. Soc., Providence, RI, 2005.

    Google Scholar 

  2. M. Artin, A. Grothendieck, J-L. Verdier, eds. (1972), SGA4, LNM 269-270-305, Berlin, New York, Springer-Verlag.

    Google Scholar 

  3. M. Baker, S. Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph, Advances in Mathematics 215 (2007), 766–788.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Bhatt, P. Scholze, The pro-etale topology for schemes Preprint (2013), arXiv:1309.1198

    Google Scholar 

  5. M. Berry, Riemann’s zeta function: a model of quantum chaos, Lecture Notes in Physics, Vol.263, Springer-Verlag, 1986.

    Google Scholar 

  6. M. Berry and J. Keating, H = qp and the Riemann zeros, “Supersymmetry and Trace Formulae: Chaos and Disorder”, edited by J.P. Keating, D.E. Khmelnitskii and I.V. Lerner, Plenum Press.

    Google Scholar 

  7. P. Berthelot, Cohomologie cristalline des schémas de caractéristique p > 0, Lecture Notes in Math., vol. 407, Springer-Verlag, New York, 1974.

    Google Scholar 

  8. A. Bjorner, L. Lovasz, P. W. Shor, Chip-firing games on graphs, European J. Combin., 12(4), (1991), 283–291.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Bombieri, Problems of the Millenium: The Riemann Hypothesis, Clay mathematical Institute (2000).

    Google Scholar 

  10. E. Bombieri, The classical theory of Zeta and L-functions, Milan J. Math. Vol. 78 (2010) 11–59.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Bombieri, J. Lagarias Complements to Li’s criterion for the Riemann hypothesis. J. Number Theory 77 (1999), no. 2, 274–287.

    Google Scholar 

  12. J.B. Bost, A. Connes, Hecke algebras, Type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (New Series) Vol.1 (1995) N.3, 411–457.

    Google Scholar 

  13. F. Bruhat, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes p-adiques. Bull. Soc. Math. France, 89 (1961), 43–75.

    MathSciNet  MATH  Google Scholar 

  14. J.F. Burnol, The explicit formula and the conductor operator, math.NT/9902080.

    Google Scholar 

  15. J.F. Burnol, Sur les formules explicites. I. Analyse invariante. C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 423–428.

    Article  MathSciNet  Google Scholar 

  16. P. Cartier, Des nombres premiers à la géométrie algébrique (une brève histoire de la fonction zêta). Analyse diophantienne et géométrie algébrique, 51–77, Cahiers Sém. Hist. Math. Sér. 2, 3, Univ. Paris VI, Paris, 1993.

    Google Scholar 

  17. G. Cohen, S. Gaubert, R. Nikoukhah, J.P. Quadrat, Convex analysis and spectral analysis of timed event graphs, Decision and Control, 1989, Proceedings of the 28th IEEE Conference.

    Google Scholar 

  18. A. Connes, A survey of foliations and operator algebras. In “Operator algebras and applications”, Part I (Kingston, Ont., 1980), pp. 521–628, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, R.I., 1982.

    Google Scholar 

  19. A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function. Selecta Math. (N.S.) 5 (1999), no. 1, 29–106.

    Google Scholar 

  20. A. Connes, Formules explicites, formules de trace et réalisation spectrale des zéros de la fonction zéta, Course at Collège de France, 1999.

    Google Scholar 

  21. A. Connes, The Witt construction in characteristic one and Quantization. Noncommutative geometry and global analysis, 83–113, Contemp. Math., 546, Amer. Math. Soc., Providence, RI, 2011.

    Google Scholar 

  22. A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields, and Motives, Colloquium Publications, Vol.55, American Mathematical Society, 2008.

    Google Scholar 

  23. A. Connes, C. Consani, Schemes over \(\mathbb{F}_{1}\) and zeta functions, Compositio Mathematica 146 (6), (2010) 1383–1415.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Connes, C. Consani, From monoids to hyperstructures: in search of an absolute arith- metic, in Casimir Force, Casimir Operators and the Riemann Hypothesis, de Gruyter (2010), 147–198.

    Google Scholar 

  25. A. Connes, C. Consani, The hyperring of adèle classes, Journal of Number Theory 131 (2011) 159–194.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Connes, C. Consani On the arithmetic of the BC-system, J. Noncommut. Geom. 8 (2014), no. 3, 873–945.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Connes, C. Consani, Characteristic one, entropy and the absolute point, “Noncommutative Geometry, Arithmetic, and Related Topics”, the Twenty-First Meeting of the Japan-U.S. Mathematics Institute, Baltimore 2009, JHUP (2012), 75–139.

    Google Scholar 

  28. A. Connes, C. Consani, The universal thickening of the field of real numbers, Advances in the Theory of Numbers, Fields Institute Communications 77 (2015).

    MATH  Google Scholar 

  29. A. Connes, C. Consani, Cyclic homology, Serre’s local factors and the \(\lambda\) -operations; J. K-Theory 14 (2014), no. 1, 1–45.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Connes, C. Consani, The Arithmetic Site, Comptes Rendus Mathématiques Ser. I 352 (2014), 971–975.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Connes, C. Consani, Geometry of the Arithmetic Site. Adv. Math. 291 (2016), 274–329. ArXiv: 1502.05580.

    Google Scholar 

  32. A. Connes, C. Consani, Absolute algebra and Segal’s Γ-rings: au dessous de Spec(Z). J. Number Theory 162 (2016), 518–551.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Connes, C. Consani, The Scaling Site. C. R. Math. Acad. Sci. Paris 354 (2016), no. 1, 1–6.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Cuninghame-Green, Minimax algebra, Lecture Notes in Economics and Mathematical Systems, Volume 166, Springer, 1979.

    Google Scholar 

  35. A. Deitmar, Schemes over \(\mathbb{F}_{1}\), in Number Fields and Function Fields Two Parallel Worlds. Ed. by G. van der Geer, B. Moonen, R. Schoof. Progr. in Math, vol. 239, 2005.

    Google Scholar 

  36. A. Deitmar, \(\mathbb{F}_{1}\) -schemes and toric varieties, Contributions to Algebra and Geometry Vol. 49, No. 2, pp. 517–525 (2008).

    Google Scholar 

  37. P. Deligne, La conjecture de Weil. I. Publ. Math. Inst. Hautes Études Sci. No. 43 (1974), 273–307.

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Deninger, On the Γ-factors attached to motives, Invent. Math. 104 (1991) 245–261.

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Deninger, Motivic L-functions and regularized determinants, in “Motives”, Proceedings of Symposia in Pure Mathematics, Vol. 55 (1994) Part I, 707–743.

    Google Scholar 

  40. D. Dhar, Self-organized critical state of sandpile automaton models. Phys. Rev. Lett., 64(14):1613–1616, Apr 1990.

    Google Scholar 

  41. J. Dixmier, On some C -algebras considered by Glimm. J. Functional Analysis, 1, (1967), 182–203.

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Dundas, T. Goodwillie, R. McCarthy, The local structure of algebraic K-theory. Algebra and Applications, 18. Springer-Verlag London, Ltd., London, 2013.

    Google Scholar 

  43. N. Durov, New approach to Arakelov Geometry. arXiv:0704.2030.

    Google Scholar 

  44. H.M. Edward, Riemann’s zeta function, Dover, 2001.

    Google Scholar 

  45. M. Einsiedler, M. Kapranov, D. Lind, Non-Archimedean amoebas and tropical varieties. (English summary) J. Reine Angew. Math. 601 (2006), 139–157.

    Google Scholar 

  46. M. V. Fedoriuk, V. P. Maslov, Semiclassical approximation in quantum mechanics. Translated from the Russian by J. Niederle and J. Tolar. Mathematical Physics and Applied Mathematics, 7. Contemporary Mathematics, 5. D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1981.

    Google Scholar 

  47. E. Galois, Oeuvres de Galois, Gauthier-Villars, Paris (1962).

    MATH  Google Scholar 

  48. A. Gathmann and M. Kerber, A Riemann-Roch theorem in tropical geometry. Math. Z., 259(1):217–230, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Gaubert, Methods and applications of (max, +) linear algebra, STACS 97 (Lubek), Lecture Notes in Comput. Sci., vol. 1200, Springer, Berlin, (1997), 261–282.

    Google Scholar 

  50. S. Gaubert, Two lectures on the max-plus algebra. Proceedings of the 26th Spring School of Theoretical Computer Science, (1998), 83–147.

    Google Scholar 

  51. I. Gelfand, M. Kapranov, A Zelevinsky, Discriminants, resultants, and multidimensional determinants. Mathematics: Theory and Applications. Birkhauser Boston, Inc., Boston, MA, 1994.

    Google Scholar 

  52. J. Golan, Semi-rings and their applications, Updated and expanded version of The theory of semi-rings, with applications to mathematics and theoretical computer science [Longman Sci. Tech., Harlow, 1992. Kluwer Academic Publishers, Dordrecht, 1999.

    Google Scholar 

  53. M. Gondran, M. Minoux, L’indépendance linéaire dans les dioides. (French) Bull. Direction Etudes Rech. Sér. C Math. Inform. 1978, no. 1, 67–90.

    Google Scholar 

  54. A. Grothendieck, Sur une note de Mattuck-Tate J. reine angew. Math. 200, 208–215 (1958).

    MathSciNet  MATH  Google Scholar 

  55. V. Guillemin, S. Sternberg, Geometric asymptotics, Math. Surveys Vol. 14, American Mathematical Society, 1977.

    Google Scholar 

  56. V. Guillemin, Lectures on spectral theory of elliptic operators, Duke Math. J., Vol. 44, 3 (1977), 485–517.

    Google Scholar 

  57. M. Gutzwiller, Classical Quantization of a Hamiltonian with Ergodic Behavior, Physical Review Letters 45 (1980) 150–153.

    Article  Google Scholar 

  58. M. Gutzwiller, Chaos in classical and quantum mechanics, Interdisciplinary Applied Mathematics, 1. Springer-Verlag, New York, 1990.

    Book  MATH  Google Scholar 

  59. S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math., 101 (1990), 697–703.

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Hejhal, The Selberg trace formula and the Riemann zeta function. Duke Math. J. 43 (1976), no. 3, 441–482.

    Article  MathSciNet  MATH  Google Scholar 

  61. L. Hesselholt, On the p-typical curves in Quillen’s K-theory. Acta Math. 177 (1996), no. 1, 1–53.

    Article  MathSciNet  MATH  Google Scholar 

  62. L. Hesselholt, On the topological cyclic homology of the algebraic closure of a local field, An Alpine Anthology of Homotopy Theory: Proceedings of the Second Arolla Conference on Algebraic Topology (Arolla, Switzerland, 2004), Contemp. Math., vol. 399, Amer. Math. Soc., Providence, RI, 2006, pp. 133–162.

    Google Scholar 

  63. L. Hesselholt, I. Madsen, On the K-theory of finite algebras over Witt vectors of perfect fields. Topology 36 (1997), no. 1, 29–102.

    Article  MathSciNet  MATH  Google Scholar 

  64. L. Hesselholt, Periodic topological cyclic homology and the Hasse-Weil zeta function

    Google Scholar 

  65. L. Illusie, Complexe de Rham-Witt et cohomologie cristalline, Ann. Scient. Ec. Norm. Sup. (4) 12 (1979), 501–661.

    Google Scholar 

  66. K. Iwasawa, On the rings of valuation vectors Ann. of Math. (2) 57, (1953). 331–356.

    Google Scholar 

  67. C.G.J. Jacobi, De investigando ordine systematis aequationum differentialium vulgarium cujuscunque C.G.J. Jacobi’s gesammelte Werke, funfter Band, herausgegeben von K. Weierstrass, Berlin, Bruck und Verlag von Georg Reimer, 1890, p. 193–216.

    Google Scholar 

  68. N. Jacobson, The radical and semi-simplicity for arbitrary rings. Amer. J. Math. 67, (1945). 300–320.

    Article  MathSciNet  MATH  Google Scholar 

  69. B. Julia, Statistical theory of numbers, Number Theory and Physics, Springer Proceedings in Physics, 47 (1990).

    Google Scholar 

  70. M. Kapranov and A. Smirnov, Cohomology determinants and reciprocity laws Prepublication.

    Google Scholar 

  71. N. Kurokawa, Multiple zeta functions: an example in Zeta functions in geometry (Tokyo, 1990) Adv. Stud. Pure Math. Vol. 21 (1992), 219–226

    MathSciNet  MATH  Google Scholar 

  72. V. Kolokoltsov, V. P. Maslov, Idempotent analysis and its applications. Mathematics and its Applications, 401. Kluwer Academic Publishers Group, Dordrecht, 1997.

    Google Scholar 

  73. X. J. Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory 65 (1997), 325–333.

    Article  MathSciNet  MATH  Google Scholar 

  74. G. Litvinov, Tropical Mathematics, Idempotent Analysis, Classical Mechanics and Geometry. Spectral theory and geometric analysis, 159–186, Contemp. Math., 535, Amer. Math. Soc., Providence, RI, 2011.

    Google Scholar 

  75. J.L. Loday, Cyclic homology. Grundlehren der Mathematischen Wissenschaften, 301. Springer-Verlag, Berlin, 1998.

    Google Scholar 

  76. M. Lydakis, Smash products and Γ-spaces, Math. Proc. Cambridge Philos. Soc. 126 (1999) 311–328.

    Article  MathSciNet  MATH  Google Scholar 

  77. D Maclagan, B. Sturmfels, Introduction to tropical geometry. Graduate Studies in Mathematics, 161. American Mathematical Society, Providence, RI, 2015.

    Google Scholar 

  78. S. Mac Lane, I Moerdijk, Sheaves in geometry and logic. A first introduction to topos theory. Corrected reprint of the 1992 edition. Universitext. Springer-Verlag, New York, 1994.

    Google Scholar 

  79. Yu.I. Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa). Columbia University Number Theory Seminar (New York, 1992). Astérisque No. 228 (1995), 4, 121–163.

    Google Scholar 

  80. R. Meyer, On a representation of the idele class group related to primes and zeros of L-functions. Duke Math. J. Vol.127 (2005), N.3, 519–595.

    Google Scholar 

  81. G. Mikhalkin, Enumerative tropical algebraic geometry in \(\mathbb{R}^{2}\). J. Amer. Math. Soc. 18 (2005), no. 2, 313–377.

    Article  MathSciNet  MATH  Google Scholar 

  82. G. Mikhalkin and I. Zharkov, Tropical curves, their Jacobians and theta functions. In Curves and abelian varieties, volume 465 of Contemp. Math., p 203–230. Amer. Math. Soc., Providence, RI, 2008.

    Google Scholar 

  83. S. Patterson, An introduction to the theory of the Riemann Zeta-function, Cambridge Univ. Press, 1988.

    Book  MATH  Google Scholar 

  84. A. Postnikov and B. Shapiro, Trees, parking functions, syzygies, and deformations of monomial ideals. Trans. Amer. Math. Soc., 356(8):3109–3142 (electronic), 2004.

    Google Scholar 

  85. B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monat der Königl. Preuss. Akad. der Wissen. zu Berlin aus der Jahre 1859 (1860) 671–680. (English translation in M.H.Edwards “Riemann’s zeta function”, Dover 2001.)

    Google Scholar 

  86. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, Journal of the Indian Mathematical Society 20 (1956) 47–87.

    MathSciNet  MATH  Google Scholar 

  87. A. Selberg, Collected Papers, Springer, 1989.

    MATH  Google Scholar 

  88. A. Selberg, The history of the prime number theorem. Lecture given in Seattle, Monday August 12, 1996, 5–6pm. Prime Number Theorem, A SYMPOSIUM on the Riemann Hypothesis, Seattle, Washington, August 12 15, 1996. In “publications.ias.edu/sites/default/files/seattle.pdf”

    Google Scholar 

  89. J. P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures). Sém. Delange-Pisot-Poitou, exp. 19, 1969/70.

    Google Scholar 

  90. I. Simon, Limited subsets of the free monoid. Proc. of the 19-th Annual Symposium on computer Science (1978), 143–150.

    Google Scholar 

  91. C. Soulé, Les variétés sur le corps à un élément. Mosc. Math. J. 4 (2004), no. 1, 217–244.

    MathSciNet  Google Scholar 

  92. R. Steinberg, A geometric approach to the representations of the full linear group over a Galois field, Transactions of the AMS, Vol. 71, No. 2 (1951), pp. 274–282.

    Article  MathSciNet  MATH  Google Scholar 

  93. J. Tate, Fourier analysis in number fields and Hecke’s zeta-function, Ph.D. Thesis, Princeton, 1950. Reprinted in J.W.S. Cassels and A. Frölich (Eds.) “Algebraic Number Theory”, Academic Press, 1967.

    Google Scholar 

  94. J. Tate, Classes d’isogénie des variététs abéliennes sur un corps fini, d’après T. Honda, Séminaire Bourbaki, 21-ème année, 352, 1968–1969.

    Google Scholar 

  95. J. Tits, Sur les analogues algébriques des groupes semi-simples complexes. Colloque d’algèbre supérieure, Bruxelles 19–22 décembre 1956, Centre Belge de Recherches Mathématiques Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris (1957), 261–289.

    Google Scholar 

  96. O. Viro, From the sixteenth Hilbert problem to tropical geometry. Jpn. J. Math. 3 (2008), no. 2, 185–214.

    Article  MathSciNet  MATH  Google Scholar 

  97. O. Viro, On basic concepts of tropical geometry. (Russian) Tr. Mat. Inst. Steklova 273 (2011), Sovremennye Problemy Matematiki, 271–303; translation in Proc. Steklov Inst. Math. 273 (2011), no. 1, 252–282

    Google Scholar 

  98. C. Weibel, Cyclic Homology for schemes. Proc. Amer. Math. Soc. 124 (1996), no. 6, 1655–1662.

    Article  MathSciNet  MATH  Google Scholar 

  99. C. Weibel, The Hodge filtration and cyclic homology. K-Theory 12 (1997), no. 2, 145–164.

    Article  MathSciNet  MATH  Google Scholar 

  100. A. Weil, Sur la théorie du corps de classes J. math. Soc. Japan, t. 3, 1951, p. 1–35.

    Google Scholar 

  101. A. Weil, Sur les “formules explicites” de la théorie des nombres premiers. (French) Comm. Sém. Math. Univ. Lund, (1952). Tome Supplémentaire, 252–265.

    Google Scholar 

  102. A. Weil, Basic Number Theory, Reprint of the second (1973) edition. Classics in Mathematics. Springer-Verlag, 1995.

    Google Scholar 

  103. A. Weil, Sur les formules explicites de la théorie des nombres premiers, Izv. Mat. Nauk., (Ser. Mat.) Vol.36 (1972) 3–18. (in Oeuvres compltes, Vol. 2, 48–62.)

    Google Scholar 

  104. A. Weil, Oeuvres scientifiques/Collected papers, I. II. III. Springer Collected Works in Mathematics. Springer, Heidelberg, 2014.

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to J. B. Bost for the reference [94], to J. B. Bost, P. Cartier, C. Consani, D. Goss, H. Moscovici, M. Th. Rassias, C. Skau and W. van Suijlekom for their detailed comments, to S. Gaubert for his help in Sect. 4.2 and to Lars Hesselholt for his comments and for allowing me to mention his forthcoming paper [64].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Connes, A. (2016). An Essay on the Riemann Hypothesis. In: Nash, Jr., J., Rassias, M. (eds) Open Problems in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-32162-2_5

Download citation

Publish with us

Policies and ethics