Skip to main content

The Conjecture of Birch and Swinnerton-Dyer

  • Chapter
  • First Online:

Abstract

The conjecture of Birch and Swinnerton-Dyer is one of the principal open problems of number theory today. Since it involves exact formulae rather than asymptotic questions, it has been tested numerically more extensively than any other conjecture in the history of number theory, and the numerical results obtained have always been in perfect accord with every aspect of the conjecture. The present article is aimed at the non-expert, and gives a brief account of the history of the conjecture, its precise formulation, and the partial results obtained so far in support of it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Bertolini, H. Darmon, V. Rotger, Beilinson-Flach elements and Euler systems II: The Birch-Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-series, J. Algebraic Geometry 24 (2015), 569–604.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Birch, P. Swinnerton-Dyer, Notes on elliptic curves I, Crelle 212 (1963), 7–25.

    MathSciNet  MATH  Google Scholar 

  3. B. Birch, P. Swinnerton-Dyer, Notes on elliptic curves II, Crelle 218 (1965), 79–108.

    MathSciNet  MATH  Google Scholar 

  4. B. Birch, Elliptic curves and modular functions in Symposia Mathematica, Indam Rome 1968/1969, Academic Press, 4 (1970), 27–32

    MathSciNet  Google Scholar 

  5. C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over \(\mathbb{Q}\) : wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843–939.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Bump, S. Friedberg and J. Hoffstein, Non-vanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543–618.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Cai, J. Shu, Y. Tian, Explicit Gross-Zagier and Waldpsurger formulae, Algebra and Number Theory, 8 (2014), 2523–2572.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Cassels, Arithmetic on curves of genus 1, VIII, Crelle 217 (1965), 180–199.

    MathSciNet  MATH  Google Scholar 

  9. J. Cassels, Arithmetic on curves of genus 1, IV. Proof of the Hauptvermutung, Crelle 211 (1962), 95–112

    MathSciNet  MATH  Google Scholar 

  10. J. Coates, Elliptic curves with complex multiplication and Iwasawa theory, Bull. London Math. Soc. 23 (1991), 321–350.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Coates, Elliptic curves - The crossroads of theory and computation in ANTS 2002, Springer LNCS 2369 (2002), 9–19.

    MathSciNet  MATH  Google Scholar 

  12. J. Coates, A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 233–251

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Coates, Y. Li, Y. Tian, S. Zhai, Quadratic twists of elliptic curves, Proc. London Math. Soc. 110 (2015), 357–394.

    Article  MathSciNet  MATH  Google Scholar 

  14. B.Creutz, R. Miller, Second isogeny descents and the Birch-Swinnerton-Dyer conjectural formula, J. of Algebra 372 (2012), 673–701.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Cremona, Algorithms for Modular Elliptic Curves, second Edition, Cambridge University Press, 1997.

    MATH  Google Scholar 

  16. T. Dokchitser, V. Dokchitser, On the Birch-Swinnerton-Dyer quotients modulo squares, Ann. of Math. 172 (2010), 567–596.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Deuring, Die Zetafunktionen einer algebraischen Kurve von Geschlechts Eins, Nach. Akad. Wiss. Göttingen, (1953) 85–94, (1955) 13–42, (1956) 37–76, (1957) 55–80.

    Google Scholar 

  18. G. Faltings, Endlichkeitssatze fur abelsche Varietten ber zahlkorpern, Invent. Math. 73 (1983), 349–366.

    Article  MathSciNet  Google Scholar 

  19. N. Freitas, B. Le Hung, and S. Siksek, Elliptic curves over real quadratic fields are modular, Invent. Math., 201 (2015), 159–206.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Goldfeld The conjectures of Birch and Swinnerton-Dyer and the class numbers of imaginary quadratic fields, in Journees arithmetiques de Caen, Asterisque 41–42 (1977), 219–227.

    MathSciNet  MATH  Google Scholar 

  21. D. Goldfeld Conjectures on elliptic curves over quadratic fields, in Number Theory, Carbondale 1979, Springer Lecture Notes 751 (1979), 108–118.

    MathSciNet  Google Scholar 

  22. B. Gross, Heegner Points on X 0 (N), in Modular Forms (ed. R. A. Rankin). Ellis Horwood (1984).

    Google Scholar 

  23. B. Gross, Kolyvagin’s work on modular elliptic curves in L-functions and arithmetic (Durham 1989), London Math. Soc. Lecture Notes 153 (1991), 235–256.

    Google Scholar 

  24. B. Gross, D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225–320.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Heegner, Diophantische analysis und modulfunktionen, Math. Z. 56 (1952), 227–253.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Kato, p-adic Hodge theory and values of zeta functions and modular forms in Cohomologies p-adiques et applications arithmetiques III, Asterisque 295 (2004), 117–290.

    Google Scholar 

  27. V. Kolyvagin, Finiteness of \(E(\mathbb{Q})\) and \(\mbox{ III }(E/\mathbb{Q})\) and for a class of Weil curves, Izv. Akad. Nauk SSSR 52 (1988), translation Math. USSR-Izv. 32 (1989), 523–541.

    Google Scholar 

  28. S. Kobayashi, The p-adic Gross-Zagier formula for elliptic curves at supersingular primes, Invent. Math. 191 (2013), 527–629.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Kings, D. Loeffler, S. Zerbes, Rankin-Eisenstein classes and explicit reciprocity laws arXiv.org/abs/1503.02888.

    Google Scholar 

  30. A. Lei, D. Loeffler, S. Zerbes Euler systems for Rankin-Selberg convolutions of modular forms, Ann. of Math., 180 (2014), 653–771.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Loeffler, S. Zerbes, Rankin-Eisenstein classes in Coleman families, arXiv.org/abs/1506.06703.

    Google Scholar 

  32. B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 33–186.

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Mazur, Rational points of abelian varieties in towers of number fields, Invent. Math. 18 (1972), 183–266.

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Miller, Proving the Birch-Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one, London Math. Soc. J. Comput. Math. 14(2011), 327–350.

    MathSciNet  MATH  Google Scholar 

  36. R. Miller, M. Stoll, Explicit isogeny descent on elliptic curves, Math. Comp. 82 (2013), 513–529.

    Article  MathSciNet  MATH  Google Scholar 

  37. K. Murty and R. Murty, Mean values of derivatives of modular L-series, Ann. of Math., 133 (1991), 447–475.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Oesterle, Nombres de classes de corps quadratiques imaginaires, Seminaire N. Bourbaki, 1983–1984, 631, 309–323.

    Google Scholar 

  39. D. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. Math. 75 (1984), 404–423

    MathSciNet  MATH  Google Scholar 

  40. B. Perrin-Riou, Fonctions L p-adiques, thorie d’Iwasawa, et points de Heegner, Bull. Soc. Math. France, 115(1987), 399–456.

    MathSciNet  MATH  Google Scholar 

  41. R. Pollack, K. Rubin The main conjecture for CM elliptic curves at supersingular primes, Ann. of Math. 159 (2004), 447–464.

    Article  MathSciNet  MATH  Google Scholar 

  42. K. Rubin, The main conjectures of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25–68.

    Article  MathSciNet  MATH  Google Scholar 

  43. K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527–560.

    Article  MathSciNet  MATH  Google Scholar 

  44. K. Rubin, On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 93 (1988), 701–713.

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Schneider, p-adic height pairings II, Invent. Math. 79 (1985), 329–374.

    Article  MathSciNet  MATH  Google Scholar 

  46. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan 11 (1971).

    Google Scholar 

  47. J. Silverman, The arithmetic of elliptic curves, Grad. Texts Math. 106, 1986, Springer.

    Google Scholar 

  48. C. Skinner, E. Urban, The Iwasawa main conjecture for GL 2, Invent. Math. 195 (2014), 1–277.

    Article  MathSciNet  MATH  Google Scholar 

  49. N. Stephens, The Diophantine equation \(x^{3} + y^{3} = Dz^{3}\) and the conjectures of Birch and Swinnerton-Dyer, Crelle 231 (1968), 121–162.

    MathSciNet  MATH  Google Scholar 

  50. J. Tate, Algorithm for determining the type of singular fiber in an elliptic pencil, Modular Functions of One Variable IV, Springer Lecture Notes 476 (1975), 33–52.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Seminaire N. Bourbaki, 1964–1966, 306, 415–440.

    Google Scholar 

  52. J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Int. Cong. Math., Stockholm (1962), 288–295.

    Google Scholar 

  53. J. Thorne, Elliptic curves over \(\mathbb{Q}_{\infty }\) are modular, arXiv:1505.04769

    Google Scholar 

  54. Y. Tian, Congruent numbers with many prime factors, Proc. Natl. Acad. Sci. USA 109 (2012), 21256–21258.

    Article  MathSciNet  MATH  Google Scholar 

  55. Y. Tian, Congruent Numbers and Heegner Points, Cambridge Journal of Mathematics, 2 (2014), 117–161.

    Article  MathSciNet  MATH  Google Scholar 

  56. X. Wan, Iwasawa main conjectures for supersingular elliptic curves, arXiv.org/abs/1411.6352

    Google Scholar 

  57. A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. of Math. 172 (2010), 567–596.

    Article  MathSciNet  Google Scholar 

  58. R. Yager, On two variable p-adic L-functions, Ann. of Math. 115 (1982), 411–449.

    Article  MathSciNet  MATH  Google Scholar 

  59. S. Zhang, Heights of Heegner points on Shimura curves, Ann. of Math. 153 (2001), 27–147.

    Article  MathSciNet  MATH  Google Scholar 

  60. W. Zhang, Selmer group and the indivisibility of Heegner points, Cambridge Journal of Mathematics 2 (2014), 191–253.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Coates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coates, J. (2016). The Conjecture of Birch and Swinnerton-Dyer. In: Nash, Jr., J., Rassias, M. (eds) Open Problems in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-32162-2_4

Download citation

Publish with us

Policies and ethics