Skip to main content

Improving the Robustness of Mechatronic Systems

  • Chapter
  • First Online:
Mechatronic Futures

Abstract

The chapter tackles the issue of improving the robustness of mechatronic systems. In particular, the chapter highlights the need to operate at two levels, in order to accomplish both the mechatronic system, conceptual architecture, and the mechatronic parameter design. The chapter gives evidence to the criticalities in operating at the conceptual level and some tools for the evaluation of the variability of system performances. The approach presented in the chapter is then applied to an automotive power windows system. The recognition of the most significant design parameters within the mechatronic system and the understanding of their variations allow the conscious identification of system configuration that assures the minimal variation of system response under the effects of noise factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Bowden cable transmits mechanical force or energy through the movement of an inner cable relative to an outer housing.

  2. 2.

    For a DC motor it is possible to define k T i.e. the motor’s torque constant and k b i.e. the motor’s back electro magnetic force (emf) constant. In SI units k T and k b are expressed, respectively, in (N m)/A and V/(rad/s) and k T = k b.

References

  1. Bradley D, Seward D, Dawson D, Burge S (2000) Mechatronics and the design of intelligent machines and systems. CRC Press, Taylor and Francis Group, Boca Raton, Abingdon

    Google Scholar 

  2. Bathelt J, Jonsson A, Bacs C, Dierssen S, Meier M (2005) Applying the new VDI Design Guideline 2206 on mechatronic systems controlled by a PLC. In: International conference on engineering design (ICED 05), Melbourne, Australia, pp 1–14

    Google Scholar 

  3. Zheng C, Bricogne M, Le Duigou J, Eynard B (2014) Survey on mechatronic engineering: a focus on design methods and product models. Adv Eng Inform 28:241–257

    Article  Google Scholar 

  4. Lefévre J, Charles S, Bosch-Mauchand M, Eynard B, Padiolleau E (2014) Multidisciplinary modelling and simulation for mechatronic. J Des Res 12(1/2):127–144

    Google Scholar 

  5. Zupancic B, Sodja A (2011) Advanced multi-domain modelling: advantages and dangers, UKSim. In: 13th International Conference on Modelling and Simulation, doi:10.1109/UKSIM.2011.56

  6. McBride RT (2005) System analysis through bond graph modelling, PhD thesis. Department Electrical and Computer Engineering, University of Arizona

    Google Scholar 

  7. Borutzky W (2010) Bond graph methodology: development and analysis of multidisciplinary dynamic system models. Springer, London

    Book  Google Scholar 

  8. El Fahime B, Rzine B, Moujibi N, Saka A, Bouayad A, Radouani M (2010) Modeling, simulation and analysis of mechatronic systems by bond graphs and monte carlo simulations. J Model Simul Syst 1(4):2204–2212

    Google Scholar 

  9. Precup RE, Preitl S (2006) Stability and sensitivity analysis of fuzzy control systems, mechatronics applications. Acta Polytech Hung 3(1):61–76

    Google Scholar 

  10. Bishop RH (2005) Introduction to mechatronics. In: Dorf RC (ed) The engineering handbook, 2 edn. CRC Press, Boca Raton

    Google Scholar 

  11. Bolton W (2009) Mechatronics: a multidisciplinary approach, 4th edn. Prentice Hall, England

    Google Scholar 

  12. Lanzotti A, Vanacore A (2007) An efficient and easy discretizing method for the treatment of noise factors in Robust Design. Asian J Qual 8(3):188–197

    Article  Google Scholar 

  13. Lanzotti A (2008) Robust design of car packaging in virtual environment. Int J Interact Des Manuf (IJIDeM) 2(1):39–46

    Google Scholar 

  14. Lanzotti A, Barone S (2008) Robust ergonomic virtual design. In: Erto P (ed) Statistics for innovation: statistical design of “continuous” product innovation, Springer, Milano, pp 61–83

    Google Scholar 

  15. Gumus B (2005) Axiomatic product development lifecycle (APDL) model. PhD dissertation, Texas Tech University

    Google Scholar 

  16. Yang K, El-Haik B (2003) Design for six sigma. McGraw Hill, New York City

    Google Scholar 

  17. Altshuler G (2000) The innovation algorithm: TRIZ, systematic innovation and technical creativity (Shulyak L, Rodman S, (trans)). Technical Innovation Center, Worcester

    Google Scholar 

  18. Terninko J, Zusman A, Zlotin B (1998) Systematic innovation: an introduction to TRIZ (theory of inventive problem solving). St Lucie Press, Boca Raton

    Google Scholar 

  19. Kaplan S (1996) An introduction to TRIZ: the Russian theory of inventive problem solving. Ideation International Inc, Southfield

    Google Scholar 

  20. Savransky SD (2000) Engineering of creativity: introduction to TRIZ methodology of inventive problem solving. CRC Press, Boca Raton

    Google Scholar 

  21. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, 3rd edn. Wiley, Hoboken

    Google Scholar 

  22. Taguchi G (1987) System of experimental design. Kraus International Pub, New York

    MATH  Google Scholar 

  23. Phadke SM (1989) Quality engineering using robust design. Prentice-Hall International Ed, Upper Saddle River

    Google Scholar 

  24. Park S (1996) Robust design and analysis for quality engineering. Chapman & Hall, London

    Google Scholar 

  25. Wu CFJ, Hamada M (2000) Experiments. Wiley, New York

    MATH  Google Scholar 

  26. D’Errico J, Zaino RA (1988) Statistical tolerancing using a modification of Taguchi’s method. Technometrics 30(4):397–405

    Article  Google Scholar 

  27. Pignatiello J (1993) Strategies for robust multiresponse quality engineering. IIE Trans 25(3):5–15

    Article  Google Scholar 

  28. Spiring FA, Yeung AS (1998) A general class of loss functions with industrial applications. J Qual Technol 30(2):152

    Google Scholar 

  29. Kuhnt S, Erdbrügge M (2004) A strategy of robust parameter design for multiple responses. Stat Model 4:249–264

    Article  MathSciNet  MATH  Google Scholar 

  30. Murphy TE, Tsui K-L, Allen JK (2005) A review of robust design methods for multiple responses. Res Eng Des 16:118–132

    Article  Google Scholar 

  31. Johansson P, Chakhunashvili A, Barone S, Bergman B (2006) Variation mode and effect analysis: a practical tool for quality improvement. Qual Reliab Eng Int 22(8):865–876

    Article  Google Scholar 

  32. Bae SJ, Tsui K-L (2006) Analysis of dynamic robust design experiment with explicit and hidden noise variables. Qual Technol Quant Manage 3(1):55–75

    Article  MathSciNet  Google Scholar 

  33. Maghsoodloo S, Li MC (2000) Optimal asymmetric tolerance design. IIE Trans 32:1127–1137

    Google Scholar 

  34. Lanzotti A, Patalano S (2002) A CAT-based approach to optimum tolerance allocation. In: Proceedings of the 3rd CIRP ICME seminar, Ischia, Italy, pp 403–408

    Google Scholar 

  35. Seo HS, Kwak BM (2002) Efficient statistical tolerance analysis for general distributions using three-point information. Int J Prod Res 40(4):931–944

    Article  MATH  Google Scholar 

  36. Coxeter HSM, Greitzer SL (1967) Geometry revisited, mathematical association of America, ISBN 0-88385-600

    Google Scholar 

  37. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, 2nd edn. Wiley, New York City

    Google Scholar 

Download references

Acknowledgements

Authors thank eng. Ferdinando Vitolo for his technical support in the elaboration of data related to the automotive power windows system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislao Patalano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lanzotti, A., Patalano, S. (2016). Improving the Robustness of Mechatronic Systems. In: Hehenberger, P., Bradley, D. (eds) Mechatronic Futures. Springer, Cham. https://doi.org/10.1007/978-3-319-32156-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32156-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32154-7

  • Online ISBN: 978-3-319-32156-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics