Skip to main content

Design Processes of Mechatronic Systems

  • Chapter
  • First Online:
Mechatronic Futures

Abstract

Nowadays, in order to design innovative and multidisciplinary products such as mechatronics systems, product development process needs to be rethought or at least adapted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Servitization (also found as servicization or servification), refers to a paradigm of transition of a product centric offer to a combined product-service offer, underpinning a change of the business model for the company.

References

  1. Eigner M (2014) Überblick Disziplin-spezifische und -übergreifende Vorgehensmodelle, Modellbasierte virtuelle Produktentwicklung. Springer, pp 15–52

    Google Scholar 

  2. Sommerville I (2010) Software engineering, 9th edn. Addison Wesley, New York

    MATH  Google Scholar 

  3. Baines TS, Lightfoot HW, Evans S, Neely A, Greenough R, Peppard J, Roy R, Shehab E, Braganza A, Tiwari A, Alcock JR, Angus JP, Bastl M, Cousens A, Irving P, Johnson M, Kingston J, Lockett H, Martinez V, Michele P, Tranfield D, Walton IM, Wilson H (2007) State-of-the-art in product-service systems. Proc IMechE Part B J Eng Manuf 221:1543–1552

    Article  Google Scholar 

  4. Fogliatto FS, da Silveira GJC, Borenstein D (2012) The mass customization decade: an updated review of the literature. Intl J Prod Econ 138:14–25

    Article  Google Scholar 

  5. Isermann R (2007) Mechatronic design approach. The mechatronics handbook. CRC Press, Boca Raton, pp 2–3

    Google Scholar 

  6. Hyman BI (2003) Fundamentals of engineering design, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  7. Beitz W, Pahl G, Wallace K (2003) Engineering design: a systematic approach. Springer, Berlin

    Google Scholar 

  8. Ullman DG (2010) The mechanical design process. McGraw-Hill Higher Education, New York

    Google Scholar 

  9. Howard TJ, Culley SJ, Dekoninck E (2008) Describing the creative design process by the integration of engineering design and cognitive psychology literature. Des Stud 29:160–180

    Article  Google Scholar 

  10. Blanchard BS (2012) System engineering management. Wiley, London

    Google Scholar 

  11. OMG Group (2007) OMG systems modeling language. OMG SysMLTM

    Google Scholar 

  12. Plateaux R, Choley J-Y, Penas O, Riviere A (2009) Towards an integrated mechatronic design process. IEEE Intl Conf Mechatron, 1–6

    Google Scholar 

  13. Graignic P, Vosgien T, Jankovic M, Tuloup V, Berquet J, Troussier N (2013) Complex system simulation: proposition of a MBSE framework for design-analysis integration. Procedia Comput Sci 16:59–68

    Article  Google Scholar 

  14. Ye Y, Jankovic M, Bocquet J-C (2012) Managing semantic consistency in model-based systems engineering using a matrix structure. In: 32nd ASME computers and information in engineering conference, parts A & B, vol 2, pp 1193–1204

    Google Scholar 

  15. Zheng C, Bricogne M, Le Duigou J, Eynard B (2014) Survey on mechatronic engineering: a focus on design methods and product models. Adv Eng Informatics 28:241–257

    Article  Google Scholar 

  16. Chen K, Bankston J, Panchal JH, Schaefer D (2009) A framework for integrated design of mechatronic systems. In: Wang L, Nee AYC (eds) Collaborative design and planning for digital manufacturing. Springer London, pp 37–70

    Google Scholar 

  17. Hehenberger P (2014) Perspectives on hierarchical modeling in mechatronic design. Adv Eng Informatics 28:188–197

    Article  Google Scholar 

  18. Layoutsynthese elektronischer Schaltungen - Grundlegende Algorithmen für die Entwurfsautomatisierung (2006). Springer, Berlin

    Google Scholar 

  19. Royce WW (1970) Managing the development of large software systems. In: Proceedings of IEEE western electronic show and convention (WesCon), Los Angeles, pp 1–9

    Google Scholar 

  20. Boehm BW (1988) A spiral model of software development and enhancement. Computer 21:61–72

    Article  Google Scholar 

  21. Forsberg K, Mooz H (1992) The relationship of systems engineering to the project cycle. Eng Manag J 4:36–43

    Article  Google Scholar 

  22. US Department of Transportation (2007) Systems engineering for intelligent transportation systems, Washington

    Google Scholar 

  23. Aca J, Ramos M, Serrano JL, Ahuett H, Molina A (2006) Concurrent engineering of mechatronic products in virtual enterprises: selection and deployment of a PLM system for the machine tool industry. In: Luo Y (ed) Cooperative design, visualization, and engineering. Springer, Berlin, pp 318–326

    Google Scholar 

  24. Lefèvre J, Charles S, Bosch-Mauchand M, Eynard B, Padiolleau E, Multidisciplinary modelling and simulation for mechatronic design. J Des Res 12(1–2):127–144

    Google Scholar 

  25. Alvarez Cabrera AA, Foeken MJ, Tekin OA, Woestenenk K, Erden MS, De Schutter B, van Tooren MJL, Babuška R, van Houten FJAM, Tomiyama T (2010) Towards automation of control software: a review of challenges in mechatronic design. Mechatronics 20:876–886

    Article  Google Scholar 

  26. Bathelt J, Jonsson A, Bacs C, Dierssen S, Meier M (2005) Applying the new VDI design guideline 2206 on mechatronic systems controlled by a PLC. In: International conference on engineering design (ICED 05), Melbourne, p 2601

    Google Scholar 

  27. Mhenni F, Choley J-Y, Penas O, Plateaux R, Hammadi M (2014) A SysML-based methodology for mechatronic systems architectural design. Adv Eng Informatics 28:218–231

    Article  Google Scholar 

  28. Zheng C, Le Duigou J, Bricogne M, Hehenberger P, Eynard B (2015) Multidisciplinary interface modelling: a case study on the design of 3d measurement system. In: 12th international conference on product lifecycle management, Doha

    Google Scholar 

  29. Agile Manifesto (2015). www.agilemanifesto.org/. Accessed 20 Nov 2015

  30. Cooke AG, Bonnema GM, Poelman WA (2012) Agile development for a multi-disciplinary bicycle stability test bench. In: 13th mechatronics forum international conference (MECHATRONICS 2012), pp 812–819

    Google Scholar 

  31. Glas M, Ziemer S (2009) Challenges for agile development of large systems in the aviation industry. In: Proceedings of 24th ACM SIGPLAN conference on companion on object oriented programming systems languages and applications (OOPSLA’09), p 901

    Google Scholar 

  32. Stelzmann E (2012) Contextualizing agile systems engineering. IEEE Aerosp Electron Syst Mag 27:17–22

    Article  Google Scholar 

  33. Bricogne M, Rivest L, Troussier N, Eynard B (2014) Concurrent versioning principles for collaboration: towards PLM for hardware and software data management. Int J Prod Lifecycle Manag 7:17–37

    Article  Google Scholar 

  34. Fisher J (1998) Model-based systems engineering: a new paradigm. Incose Insight, Incose Insight 1:3–16

    Google Scholar 

  35. Object management group: systems modeling language specification. www.omg.org/spec/SysML/1.2/PDF/. Accessed 20 Nov 2015

  36. Cao Y, Liu Y, Paredis CJJ (2011) System-level model integration of design and simulation for mechatronic systems based on SysML. Mechatronics 21:1063–1075

    Article  Google Scholar 

  37. Kerzhner AA, Paredis CJJ (2012) A SysML-based language for modeling system-level architecture selection decisions. In: ASME 2012 conference on international design engineering technical and computers and information in engineering, Chicago, pp 1263–1276

    Google Scholar 

  38. Rajkumar R, Lee I, Sha L, Stankovic J (2010) Cyber-physical systems: the next computing revolution. In: Proceedings of 47th design automation conference (DAC’10), p 731

    Google Scholar 

  39. Rajkumar R (2012) A cyber-physical future. Proc IEEE 100:1309–1312

    Article  Google Scholar 

  40. Kopetz H (2011) Real-time systems. Springer, Berlin

    Google Scholar 

  41. Bradley D, Russell D, Ferguson I, Isaacs J, MacLeod A, White R (2015) The internet of things—the future or the end of mechatronics. Mechatronics 27:57–74

    Article  Google Scholar 

  42. Vasi VS, Lazarevic MP (2008) Standard industrial guideline for mechatronic product design. FME Trans 36:103–108

    Google Scholar 

  43. Jamshidi M (2008) Systems of systems engineering: principles and applications. Boca Raton, USA

    Google Scholar 

  44. Maier MW (1996) Architecting principles for systems-of-systems. INCOSE Int Symp 6:565–573

    Article  Google Scholar 

  45. Department of Defense (2004) Systems engineering, Defense Acquisition Guidebook, p 520

    Google Scholar 

  46. Mahut F, Daaboul J, Bricogne M, Eynard B (2015) Survey on product-service system applications in the automotive industry. IFAC-Pap Line 48:840–847

    Article  Google Scholar 

  47. Pezzotta G, Pirola F, Pinto R, Akasaka F, Shimomura Y (2015) A service engineering framework to design and assess an integrated product-service. Mechatronics 31:169–179

    Google Scholar 

  48. Zuehlke D (2010) Smart factory—towards a factory-of-things. Ann Rev Control 34:129–138

    Article  Google Scholar 

  49. Eynard B, Bosch-Mauchand M (2015) Integrated design and smart manufacturing, concurrent engineering: research and applications. doi:10.1177/1063293X15607367

    Google Scholar 

  50. Chryssolouris G, Mavrikios D, Papakostas N, Mourtzis D, Michalos G, Georgoulias K (2009) Digital manufacturing: history, perspectives, and outlook. J Eng Manuf 223(5):451–462

    Article  Google Scholar 

  51. Tao F, Zhang L, Venkatesh VC, Luo Y, Cheng Y (2011) Cloud manufacturing: a computing and service-oriented manufacturing model. J Eng Manuf 225(10):1969–1976

    Article  Google Scholar 

  52. Wu D, Greer MJ, Rosen DW, Schaefer D (2013) Cloud manufacturing: strategic vision and state-of-the-art. J Manuf Syst 32(4):564–579

    Article  Google Scholar 

  53. Gao R, Wang L, Teti R, Dornfeld D, Kumara S, Mori M, Helu M (2015) Cloud-enabled prognosis for manufacturing. CIRP Ann Manuf Technol 64(2):749–772

    Article  Google Scholar 

  54. Belkadi F, Troussier N, Eynard B, Bonjour E (2010) Collaboration based on product lifecycles interoperability for extended enterprise. Intl J Interact Des Manuf 4(3):169–179

    Article  Google Scholar 

  55. Agostinho C, Ducq Y, Zacharewicz G, Sarraipa J, Lampathaki F, Poler R, Jardim-Goncalves R (2015) Towards a sustainable interoperability in networked enterprise information systems: trends of knowledge and model-driven technology, Computers in Industry. doi:10.1016/j.compind.2015.07.001. Accessed 20 Nov 2015

    Google Scholar 

  56. Le Duigou J, Bernard A, Perry N (2011) Framework for product lifecycle management integration in small and medium enterprises networks. Comput Aided Des Appl 8(4):531–544

    Google Scholar 

  57. El Kadiri S, Grabot B, Thoben KD, Hribernik K, Emmanouilidis C, von Cieminski G, Kiritsis D (2015) Current trends on ICT technologies for enterprise information systems. Comput Ind. doi:10.1016/j.compind.2015.06.008

    Google Scholar 

  58. Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Eynard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bricogne, M., Le Duigou, J., Eynard, B. (2016). Design Processes of Mechatronic Systems. In: Hehenberger, P., Bradley, D. (eds) Mechatronic Futures. Springer, Cham. https://doi.org/10.1007/978-3-319-32156-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32156-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32154-7

  • Online ISBN: 978-3-319-32156-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics