Skip to main content

Adaptation of Deep Belief Networks to Modern Multicore Architectures

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9573))

Abstract

In our previous paper [17], the parallel realization of Restricted Boltzman Machines (RBMs) was discussed. This research confirmed a potential usefulness of Intel MIC parallel architecture for implementation of RBMs.

In this work, we investigate how the Intel MIC and Intel CPU architectures can be applied to implement the complete learning process using Deep Belief Networks (DBNs), which layers correspond to RBMs. The learning procedure is based on the matrix approach, where learning samples are grouped into packages, and represented as matrices. This approach is now applied for both the initial learning, and fine-tuning stages of learning. The influence of the package size on the accuracy of learning, as well as on the performance of computations are studied using conventional CPU and Intel Xeon Phi architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bilski, J., Litwiński, S., Smola̧g, J.: Parallel realisation of qr algorithm for neural networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent rtrn neural network learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent elman neural network learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 19–25. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bilski, J., Smoląg, J.: Parallel realisation of the recurrent multi layer perceptron learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 12–20. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Bilski, J., Smoląg, J.: Parallel approach to learning of the recurrent jordan neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 32–40. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Bilski, J., Smoląg, J., Galushkin, A.I.: The parallel approach to the conjugate gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014, Part I. LNCS, vol. 8467, pp. 12–21. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Chu, J.L., Krzyzak, A.: The recognition of partially occluded objects with support vector machines and convolutional neural networks and deep belief networks. J. Artif. Intell. Soft Comput. Res. 4(1), 5–19 (2014)

    Article  Google Scholar 

  8. Corporation, I.: Intel Xeon Phi Coprocessor System Software Developer’s Guide. The Intel Corporation, Technical report, June 2013

    Google Scholar 

  9. Dourlens, S., Ramdane-Cherif, A.: Modeling & understanding environment using semantic agents. J. Artif. Intell. Soft Comput. Res. 1(4), 301–314 (2011)

    Google Scholar 

  10. Fang, J., Varbanescu, A.L., Sips, H.: Benchmarking Intel Xeon Phi to Guide Kernel Design.Delft University of Technology Parallel and Distributed Systems Report Series, No. PDS-2013-005, pp. 1–22 (2013)

    Google Scholar 

  11. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  Google Scholar 

  12. Hinton, G.: A practical guide to training restricted Boltzmann machines. Momentum 9(1), 926 (2010)

    Google Scholar 

  13. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  14. http://miclab.pl: MICLAB pilot laboratory of massively parallel systems. Web Page (2015)

  15. http://yann.lecun.com/exdb/mnist/: The mnist database of handwritten digits

  16. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1725–1732, June 2014

    Google Scholar 

  17. Olas, T., Mleczko, W.K., Nowicki, R.K., Wyrzykowski, R., Krzyzak, A.: Artificial intelligence and soft computing. In: Proceedings of the 14th International Conference, ICAISC 2015, Zakopane, Poland, 14–18 June 2015, Part I, chap. Adaptation of RBM Learning for Intel MIC Architecture, pp. 90–101. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  18. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural networks. J. Artif. Intell. Soft Comput. Res. 1(2), 103–114 (2011)

    MATH  Google Scholar 

  19. Reinders, J.: An Overview of Programming for Intel Xeon Processors and Intel Xeon Phi Coprocessors. Technical report (2012)

    Google Scholar 

  20. Rojek, K.A., Ciznicki, M., Rosa, B., Kopta, P., Kulczewski, M., Kurowski, K., Piotrowski, Z.P., Szustak, L., Wojcik, D.K., Wyrzykowski, R.: Adaptation of fluid model eulag to graphics processing unit architecture. Concurr. Comput.: Pract. Exper. 27(4), 937–957 (2015)

    Article  Google Scholar 

  21. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. arXiv preprint (2014). arXiv:1409.0575

  22. Saule, E., Kaya, K., Catalyurek, U., Saule, E., Kaya, K., Catalyurek, U.: Performance evaluation of sparse matrix multiplication kernels on intel xeon phi. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) Parallel Processing and Applied Mathematics. LNCS, vol. 8384, pp. 559–570. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Rumelhart, D.E., McLelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1 Fundations, chapter 6, pp. 194–281. MIT (1986)

    Google Scholar 

  24. Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory (1986)

    Google Scholar 

  25. Staff, C.I., Reinders, J.: Parallel Programming and Optimization with Intel\(\textregistered \) Xeon PhiTM Coprocessors: Handbook on the Development and Optimization of Parallel Aplications for Intel\(\textregistered \) Xeon Coprocessors and Intel\(\textregistered \) Xeon PhiTM Coprocessors. Colfax International (2013)

    Google Scholar 

  26. Szustak, L., Rojek, K., Gepner, P.: Using intel xeon phi coprocessor to accelerate computations in MPDATA algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 582–592. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  27. Szustak, L., Rojek, K., Olas, T., Kuczynski, L., Halbiniak, K., Gepner, P.: Adaptation of MPDATA heterogeneous stencil computation to intel xeon phi coprocessor. Sci. Program 2015, 14 (2015)

    Google Scholar 

  28. Tambouratzis, T., Chernikova, D., Pázsit, I.: Pulse shape discrimination of neutrons and gamma rays using Kohonen artificial neural networks. J. Artif. Intell. Soft Comput. Res. 3(2), 77–88 (2013)

    Article  Google Scholar 

  29. Wyrzykowski, R., Szustak, L., Rojek, K.: Parallelization of 2d MPDATA EULAG algorithm on hybrid architectures with GPU accelerators. Parallel Comput. 40(8), 425–447 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Centre for Research and Development under MICLAB project No. POIG.02.03.00.24-093/13, and by the Polish Ministry of Science and Education under Grant No. BS-1-112-304/99/S, as well as by the Polish National Science Centre under grant No. DEC-2012/05/B/ST6/03620.

The authors are grateful to the Czestochowa University of Technology for granting access to Intel CPU and Xeon Phi platforms providing by the MICLAB project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Olas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Olas, T., Mleczko, W.K., Nowicki, R.K., Wyrzykowski, R. (2016). Adaptation of Deep Belief Networks to Modern Multicore Architectures. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2015. Lecture Notes in Computer Science(), vol 9573. Springer, Cham. https://doi.org/10.1007/978-3-319-32149-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32149-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32148-6

  • Online ISBN: 978-3-319-32149-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics