Mathematical Methods in Image Processing and Computer Vision

Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 9)


Image processing and computer vision are growing research fields that take advantage of the increasing power or modern computers linked with sophisticated techniques coming from many fields of expertise and in particular from mathematics. We present an introduction to some problems in computer vision and image processing and to some mathematical techniques and concepts that are nowadays routinely used to approach them.


Computer vision Image processing Variational methods 



The author is grateful to the organizers and scientific committee of the Jacques-Louis Lions Spanish-French school for the invitation. This research was Partially supported by Spanish MINECO grant MTM 2014-54388. This work is dedicated to the memory of Vicent Caselles.


  1. 1.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20 (1–2), 89–97 (2004)MathSciNetGoogle Scholar
  2. 2.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10 (2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal–dual method for total variation–based image restoration. SIAM J. Sci. Comput. 20 (6), 1964–1977 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11 (2), 130–141 (2000)CrossRefGoogle Scholar
  5. 5.
    Cok, D.R.: Signal processing method and apparatus for producing interpolated chrominance values in a sampled color image signal. U.S. Patent No. 4,642,678 (1987)Google Scholar
  6. 6.
    Collins, R.: A plane-sweep approach to true multi-image matching. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, pp. 358–363 (1996)Google Scholar
  7. 7.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, New Orleans (1996)CrossRefGoogle Scholar
  8. 8.
    Faugeras, O., Luong, Q.T.: The Geometry of Multiple Images. MIT, Cambridge (2001)zbMATHGoogle Scholar
  9. 9.
    Ferradans, S., Bertalmio, M., Caselles, V.: Geometry-based demosaicking. IEEE Trans. Imgage Process. 18 (3), 665–670 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gong, M.: Real-time joint disparity and disparity flow estimation on programmable graphics hardware. Comput. Vis. Image Underst. 113 (1), 90–100 (2009)CrossRefGoogle Scholar
  11. 11.
    Gunturk, B.K., Glotzbach, J., Altunbasak, Y., Schafer, R.W., Mersereau, R.M.: Demosaicking: color filter array interpolation. IEEE Signal Proc. Mag. 22 (1), 44–54 (2005)CrossRefGoogle Scholar
  12. 12.
    Gunturk, B.K., Li, X. (eds.): Image Restoration: Fundamentals and Advances. Digital Imaging and Computer Vision. CRC Press, Boca Raton (2012)zbMATHGoogle Scholar
  13. 13.
    Hamilton, J.F., Adams, J.E.: Adaptive color plane interpolation in single sensor color electronic camera. U.S. Patent No. 5,629,734 (1997)Google Scholar
  14. 14.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  15. 15.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)CrossRefGoogle Scholar
  16. 16.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26 (2), 147–159 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Laroche, C.A., Prescott, M.A.: Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients. U.S. Patent No. 5,373,322 (1994)Google Scholar
  18. 18.
    Menon, D., Calvagno, G.: Color image demosaicking: an overview. Signal Process. Image Commun. 26 (8–9), 518–533 (2011)CrossRefGoogle Scholar
  19. 19.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Noma, A., Graciano, A.B., Cesar, R.M. Jr., Consularo, L.A., Bloch, I.: Interactive image segmentation by matching attributed relational graphs. Pattern Recognit. 45 (3), 1159–1179 (2012)CrossRefGoogle Scholar
  21. 21.
    Papadakis, N., Baeza, A., Gargallo, P., Caselles, V.: Polyconvexification of the multi-label optical flow problem. In: Proceedings of the International Conference on Image Processing (ICIP), Hong Kong, pp. 765–768 (2010)Google Scholar
  22. 22.
    Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Proceedings of the European Conference on Computer Vision (ECCV), Marseille (2008)Google Scholar
  23. 23.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (5), 877–898 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of ill-posed problems. Winston & Sons, Washington (1977)zbMATHGoogle Scholar
  26. 26.
    Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene flow. IEEE Trans. Pattern Anal. Mach. Intell. 27 (3), 475–480 (2005)CrossRefGoogle Scholar
  27. 27.
    Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. Pattern Recognit. (Proc. DAGM 2007) LNCS 4713, 214–223 (2007)Google Scholar
  28. 28.
    Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Tech. Rep. 08–34, UCLA (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Facultat de Matemàtiques, Departament de Matemàtica AplicadaUniversitat de ValènciaValènciaSpain

Personalised recommendations