Compactness of Linearized Kinetic Operators

  • Laurent Boudin
  • Francesco SalvaraniEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 162)


This article reviews various results on the compactness of the linearized Boltzmann operator and of its generalization to mixtures of non-reactive monatomic gases.


Boltzmann equation Boltzmann system for mixtures Linearized Boltzmann operator Compactness properties Grad’s procedure 



The authors thank Bérénice Grec for her careful proof-reading and the fruitful discussions about the compactness of the linearized Boltzmann operator.


  1. 1.
    Boltzmann, L.: Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitzungsberichte Akad. Wiss. 66, 275–370 (1873)Google Scholar
  2. 2.
    Boltzmann, L.: Lectures on Gas Theory. Translated by Stephen G. Brush. University of California Press, Berkeley (1964)Google Scholar
  3. 3.
    Bothe, D.: On the Maxwell-Stefan approach to multicomponent diffusion. In: Parabolic problems, Progress in Nonlinear Differential Equations Applications, vol. 80, pp. 81–93. Birkhäuser/Springer Basel AG, Basel (2011)Google Scholar
  4. 4.
    Boudin, L., Grec, B., Pavić, M., Salvarani, F.: Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinet. Relat. Models 6(1), 137–157 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boudin, L., Grec, B., Salvarani, F.: A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete Contin. Dyn. Syst. Ser. B 17(5), 1427–1440 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boudin, L., Grec, B., Salvarani, F.: The Maxwell-Stefan diffusion limit for a kinetic model of mixtures. Acta Appl. Math. 136, 79–90 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bourgat, J.-F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases and Boltzmann’s theorem. European J. Mech. B Fluids 13(2), 237–254 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Caflisch, R.E.: The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous. Comm. Math. Phys. 74(1), 71–95 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Caflisch, R.E.: The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic. Comm. Math. Phys. 74(2), 97–109 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Carleman, T.: Problèmes mathématiques dans la théorie cinétique des gaz. Publlisher Science Institute Mittag-Leffler. 2. Almqvist & Wiksells Boktryckeri Ab, Uppsala (1957)Google Scholar
  11. 11.
    Cercignani, C.: The Boltzmann equation and its applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988)Google Scholar
  12. 12.
    Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences, vol. 106. Springer, New York (1994)Google Scholar
  13. 13.
    Daus, E.S., Jüngel, A., Mouhot, C., Zamponi, N.: Hypocoercivity for a linearized multi-species Boltzmann system. ArXiv e-prints, April 2015Google Scholar
  14. 14.
    Desvillettes, L.: Sur un modèle de type Borgnakke-Larsen conduisant à des lois d’énergie non linéaires en température pour les gaz parfaits polyatomiques. Ann. Fac. Sci. Toulouse Math. (6), 6(2):257–262 (1997)Google Scholar
  15. 15.
    Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids 24(2), 219–236 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Duncan, J.B., Toor, H.L.: An experimental study of three component gas diffusion. AIChE J. 8(1), 38–41 (1962)CrossRefGoogle Scholar
  17. 17.
    Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)CrossRefzbMATHGoogle Scholar
  18. 18.
    Golse, F., Poupaud, F.: Stationary solutions of the linearized Boltzmann equation in a half-space. Math. Methods Appl. Sci. 11(4), 483–502 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, pp. 205–294. Springer, Berlin (1958)Google Scholar
  20. 20.
    Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), vol. I, pp. 26–59. Academic Press, New York, (1963)Google Scholar
  21. 21.
    Guo, Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hecke, E.: Über die Integralgleichung der kinetischen Gastheorie. Math. Z. 12(1), 274–286 (1922)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hilbert, D.: Begründung der kinetischen Gastheorie. Math. Ann. 72(4), 562–577 (1912)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hutridurga, H., Salvarani, F.: On the Maxwell-Stefan diffusion limit for a mixture of monatomic gases. ArXiv e-prints (2015)Google Scholar
  25. 25.
    Levermore, C.D., Sun, W.: Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinet. Relat. Models 3(2), 335–351 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Maxwell, J.C.: On the dynamical theory of gases. Phil. Trans. R. Soc. 157, 49–88 (1866)CrossRefGoogle Scholar
  27. 27.
    Mouhot, C., Strain, R.M.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. (9), 87(5), 515–535 (2007)Google Scholar
  28. 28.
    Pao, Y.P.: Boltzmann collision operator with inverse-power intermolecular potentials. I, II. Comm. Pure Appl. Math. 27, 407–428; ibid. 27, 559–581 (1974)Google Scholar
  29. 29.
    Stefan, J.: Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen. Akad. Wiss. Wien 63, 63–124 (1871)Google Scholar
  30. 30.
    Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis Lions (LJLL, CNRS UMR 7598), REO Project-teamSorbonne Universités, CNRS, UPMC Univ. Paris 06, INRIAParisFrance
  2. 2.Ceremade, UMR CNRS 7534Université Paris-Dauphine, PSL Research UniversityParis Cedex 16France
  3. 3.Dipartimento di MatematicaUniversità Degli Studi di PaviaPaviaItaly

Personalised recommendations