Advertisement

On Linear Hypocoercive BGK Models

  • Franz Achleitner
  • Anton Arnold
  • Eric A. Carlen
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 162)

Abstract

We study hypocoercivity for a class of linear and linearized BGK models for discrete and continuous phase spaces. We develop methods for constructing entropy functionals that prove exponential rates of relaxation to equilibrium. Our strategies are based on the entropy and spectral methods, adapting Lyapunov’s direct method (even for “infinite matrices” appearing for continuous phase spaces) to construct appropriate entropy functionals. Finally, we also prove local asymptotic stability of a nonlinear BGK model.

Keywords

Kinetic equations BGK models Hypocoercivity Entropy method 

Notes

Acknowledgments

The second author (AA) was supported by the FWF-doctoral school “Dissipation and dispersion in non-linear partial differential equations”. The third author (EC) was partially supported by U.S. N.S.F. grant DMS 1501007.

References

  1. 1.
    Achleitner, F., Arnold, A., Stürzer, D.: Large-time behavior in non-symmetric Fokker-Planck equations. Rivista di Matematica della Università di Parma 6, 1–68 (2015)zbMATHGoogle Scholar
  2. 2.
    Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift (2014). arXiv:1409.5425
  3. 3.
    Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial. Differ. Equ. 26(1–2), 43–100 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bergmann, P., Lebowitz, J.L.: A new approach to nonequilibrium processes. Phys. Rev. 99(2), 578–587 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)Google Scholar
  6. 6.
    Bobkov, S.G., Tetali, P.: Modified logarithmic Sobolev inequalities in discrete settings. J. Theor. Probab. 19(2), 289–336 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bosi, R., Cáceres, M.J.: The BGK model with external confining potential: existence, long-time behaviour and time-periodic Maxwellian equilibria. J. Stat. Phys. 136(2), 297–330 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Coleman, R.: On Krawtchouk polynomials (2011). arXiv:1101.1798
  9. 9.
    Diaconis, P., Saloff-Coste, L.: Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab. 6(3), 695–750 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367(6), 3807–3828 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347(9–10), 511–516 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hérau, F.: Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation. Asymptot. Anal. 46(3–4), 349–359 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kac, M.: Foundations of kinetic theory. In: Neyman, J. (ed.) Proceedings of 3rd Berkeley Symposium on Mathematical Statistics and Probability, University of California, vol 3, pp. 171–197 (1956)Google Scholar
  14. 14.
    Michel, A.N., Hou, L., Liu, D.: Stability of Dynamical Systems, 2nd edn. Birkhäuser/Springer (2015)Google Scholar
  15. 15.
    Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  16. 16.
    Perthame, B.: Global existence to the BGK model of Boltzmann equation. J. Diff. Equ. 82(1), 191–205 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Perthame, B.: Transport Equations in Biology. Birkhäuser, Basel (2007)zbMATHGoogle Scholar
  18. 18.
    Perthame, B., Pulvirenti, M.: Weighted \(L^\infty \) bounds and uniqueness for the Boltzmann BGK model. Arch. Rational Mech. Anal. 125(3), 289–295 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Seneta, E.: Nonnegative matrices and Markov chains. Springer Series in Statistics, 2nd edn. Springer-Verlag, New York (1981)Google Scholar
  20. 20.
    van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier (2007)Google Scholar
  21. 21.
    Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc. 202(950) (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Franz Achleitner
    • 1
  • Anton Arnold
    • 1
  • Eric A. Carlen
    • 2
  1. 1.Vienna University of TechnologyInstitute of Analysis and Scientific ComputingWienAustria
  2. 2.Department of MathematicsRutgers UniversityPiscatawayUSA

Personalised recommendations