Skip to main content

Fractured Sedimentary Rock Aquifers

  • Chapter
  • First Online:
Aquifer Characterization Techniques

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

  • 2510 Accesses

Abstract

Fractured sedimentary rock contains two domains, the fractures and adjoining rock matrix. Fractures often provide most of the aquifer transmissivity, whereas the bulk of water and solute storage may occur in the matrix. The concentration of flow in fractures, which constitutes a very minor part of the total volume of the strata, results in greater flow velocities and travel distances than would occur in single-porosity systems. Characterization of fractured aquifers typically involves a multiple-method approach that includes identification of fractures, determination of whether or not identified fractures are hydraulically active, and determination of the hydraulic properties of the fractures and fractured zones. Fractured rock aquifers may be modeled using either a single-continuum (equivalent porous media), dual-continuum, or discrete fracture network approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barker, J. A. & Black, J. H. (1983) Slug tests in fissured aquifers. Water Resources Research, 19, 1558–1564.

    Google Scholar 

  • Bear, J. (1972) Dynamics of fluids in porous media. New York: Elsevier.

    Google Scholar 

  • Bertels, S. P., DiCarlo, D. A., & Blunt, M. J. (2001) Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resources Research, 37(3), 649–662.

    Google Scholar 

  • Black, J. H. (1985) The interpretation of slug tests in fissured rock. Quarterly Journal of Engineering Geology, 18(2), 161–171.

    Google Scholar 

  • Blessent, D., Jørgenesen, P. R., & Therrien, R., (2014) Comparing discrete fractures and continuum models to predict contaminant transport in fractured porous media. Groundwater, 52, 84–95.

    Google Scholar 

  • Brainerd, R. J., & Robbins, G. A. (2004) A tracer dilution method for fracture characterization of bedrock wells. Ground Water, 42, 774–780.

    Google Scholar 

  • Carruthers, R. M., Greenbaum, D., Peart, R. J., & Herbert, R. (1991) Geophysical investigation of photolineaments in southeast Zimbabwe. Quarterly Journal of Engineering and Hydrogeology, 24, 437–451.

    Google Scholar 

  • Chlebica, D. W., & Robbins, G. A. (2013) Altering dissolved oxygen to determine flow conditions in fractured bedrock wells. Groundwater Monitoring & Remediation, 33(4), 100–107.

    Google Scholar 

  • Cook, P. G. (2003) A guide to regional groundwater flow in fractured rock aquifers. Adelaide: CSIRO.

    Google Scholar 

  • Cooke, M. L., Simo, J. A., Underwood, C. A., & Rijken, P. (2006) Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow. Sedimentary Geology, 184, 225–239.

    Google Scholar 

  • Cooper, H. H., Jr., & Jacob, C. E. (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Transactions American Geophysical Union, 27, 526–534.

    Google Scholar 

  • Cooper, H. H., Jr., Bredehoeft, J. D., & Papadopulos, I. S. (1967) Response of a finite-diameter well to an instantaneous charge of water. Water Resources Research, 3, 263–269.

    Google Scholar 

  • Dahon, O., Nativ, R., Adar, E. M., Berkowitz, B., & Romen, Z. (1999) Field observation of flow in a fracture intersecting unsaturated chalk. Water Resources Research, 35, 3315–3326.

    Google Scholar 

  • Dahon, O., Nativ, R., Adar, E. M., Berkowitz, B., & Weisbrod, N. (2000) On fracture structure and preferential flow in unsaturated chalk. Ground Water, 38, 444–451.

    Google Scholar 

  • Dougherty, D. E., & Babu, D. K. (1984) Flow to a partially penetrating well in a double-porosity reservoir. Water Resources Research, 20, 1116–1122.

    Google Scholar 

  • Fies, M. W. (2004) Lineament analysis South Florida region. Aquifer storage and recovery regional study. Jacksonville, U.S. Army Corps of Engineers.

    Google Scholar 

  • Flynn, R. M., Schnegg, P.-A., Costa, R., Mallen, G., & Zwahlen, F. (2005) Identification of zones of preferential groundwater tracer transport using a mobile downhole fluorometer. Hydrogeology Journal, 13, 366–377.

    Google Scholar 

  • Gburek, W. J., Folmor, G. J., & Urban, J. B. (1999) Field data and ground water modeling in a layered fractured aquifer. Ground Water, 32, 175–185.

    Google Scholar 

  • Gellasch, C. A., Bradbury, K. R., Hart, D. J., & Bahr, J. M. (2013) Characterization of fracture connectivity in a siliciclastic bedrock aquifer near a public water supply well (Wisconsin, USA). Hydrogeology Journal, 21, 383–399.

    Google Scholar 

  • Gernand, J. D., & Heidtman, J. P. (1997) Detailed pumping test to characterize a fractured bedrock aquifer. Ground Water, 35, 632–637.

    Google Scholar 

  • Gringarten, A. C. (1982) Flow-test evaluation of fractured reservoirs. Geological Society of America Paper 189, 237–263.

    Google Scholar 

  • Gross, M. R., Fischer, M. P., Engelder, T., & Greenfield, R. J. (1995) Factors controlling joint spacing in interbedded sedimentary rocks: interpreting numerical models with field models from the Monterey Formation, USA. In Ameen, M. S., (Ed.) Fractography; fracture topography as a tool in fracture mechanics and stress analysis. Special Publication 92 (pp. 215–233). Boulder: Geological Society of America.

    Google Scholar 

  • Guo, W., Coulibaly, K., & Maliva, R. G. (2014) Simulated effects of aquifer heterogeneity on ASR system performance. Environmental Earth Sciences, 73, 7803–7809.

    Google Scholar 

  • Hardin, E. L., Cheng, C. H., Paillet, F. L., & Mendelson, J. D. (1987). Fracture characterization by means of attenuation and generation of tube waves in fractured crystalline rock at Mirror Lake, New Hampshire. Journal of Geophysical Research: Solid Earth (1978–2012), 92(B8), 7989–8006.

    Google Scholar 

  • Keller, A. A. (1997). High resolution CAT imaging of fractures in consolidated materials. International Journal of Rock Mechanics and Mining Sciences, 34(3), 155.e1–155.e16.

    Google Scholar 

  • Kulander, B. R., Dean, S. L. & Ward, B. J., Jr. (1990) Fractured core analysis: interpretation, logging, and use of natural and induced fractures in core. Methods in Exploration Series, No. 8. Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Lehne, K. A. (1990) Fracture detection from logs of North Sea chalk. In A. Hurst, M. A. Lovell & A. C. Morton (Eds.) Geological applications of wireline logs. Special Publication 48 (pp. 263–271). London: Geological Society.

    Google Scholar 

  • Long, J. C. S., Remer, J. S., Wilson, C. R., & Witherspoon, P. A. (1982) Porous media equivalents for networks of discontinuous fractures. Water Resources Research, 18, 645–658.

    Google Scholar 

  • Love, A., Simmons, C. t., Cook, P., Harrington, G. A., Herczeg, A., & Halihan, T. (2007) Estimating groundwater flow rates in fractured metasediments: Claire Valley, South Australia. In J. Krásný & J. M. Sharp, Jr. (Eds.), Groundwater in fractured rocks. Selected papers from the Groundwater in Fractured Rocks International Conference, Prague, 2003 (pp. 364–477). Leiden: Taylor & Francis.

    Google Scholar 

  • Maliva, R. G., Kennedy, G. P., Martin, W. K., Missimer, T. M., Owosina, E. S., & Dickson, J. A. D. (2002) Dolomitization-induced aquifer heterogeneity: Evidence from the Upper Floridan Aquifer, Southwest Florida. Geological Society America Bulletin, 114, 419–427.

    Google Scholar 

  • Maliva, R. G., & Walker, C. W. (1998) Hydrogeology of deep-well disposal of liquid wastes in Southwestern Florida, U.S.A. Hydrogeology Journal, 6, 538–548.

    Google Scholar 

  • Maliva, R. G., & Missimer, T. M. (2010) Aquifer storage and recovery and managed aquifer recharge using wells: Planning, hydrogeology, design, and operation. Houston: Schlumberger Water Services.

    Google Scholar 

  • McKay, L. D., Cherry, J. A., & Gillham, R. W. (1993) Field experiments in a fractured clay till. 1. Hydraulic conductivity and fracture aperture. Water Resources Research, 29, 1149–1162.

    Google Scholar 

  • Moench, A. F. (1984) Dual-porosity models for a fissured groundwater reservoir with fracture skin. Water Resources Research, 20, 831–846.

    Google Scholar 

  • Moore, R. B., Schwarz, G. E., Clark, S. F., Jr., Walsh, G. J., & Degnan, J. R. (2002) Factors related to well yield in the fractured-bedrock aquifer of New Hampshire. U.S. Geological Survey Professional Paper 1660.

    Google Scholar 

  • Morin, R. H., Carleton, G. B., & Poirer, S. (1997) Fractured-aquifer hydrogeology from geophysical logs: The Passaic Formation, New Jersey. Ground Water, 35, 328–338.

    Google Scholar 

  • Muldoon, M., & Bradbury, K. R. (2005) Site characterization in densely fractured dolomite: Comparison of methods. Ground Water, 43, 863–876.

    Google Scholar 

  • National Research Council (1996) Rock fractures and fluid flow. Washington, D.C.: National Academy Press.

    Google Scholar 

  • Nativ, R., Adar, E., Assaf, L., & Nygaard, E. (2003) Characterization of the hydraulic properties of fractures in chalk. Ground Water, 41, 532–543.

    Google Scholar 

  • Nelson, R. A., & Serra, S. (1995) Vertical and lateral variations in fracture spacing in folded carbonate sections and its relation to locating horizontal wells. Journal of Canadian Petroleum Technology, 34(6), 51–56.

    Google Scholar 

  • Neuman, S. P. (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rock. Hydrogeology Journal, 13, 124–147.

    Google Scholar 

  • Pedler, W., Head, C. L., & Williams, L. L. (1992) Hydrophysical logging: A new wellbore technique for hydrogeologic and contaminant characterization of aquifers. In Proceedings 6 th National Outdoor Action Conference (pp. 701–715). Dublin, Ohio: National Ground Water Association.

    Google Scholar 

  • Paillet, F. L., Kay, R. T., Yeskis, D., & Pedler, W. (1993) Integrating well logs into a multiple-scale investigation of a fractured sedimentary aquifer. The Log Analyst, 1 24–40.

    Google Scholar 

  • Podgorney, R. K., & Ritzi, R. W., Jr. (1997) Capture zone geometry in a fractured carbonate aquifer. Ground Water, 35, 1040–1049.

    Google Scholar 

  • Reese, R. S., & Richardson, E. (2008) Synthesis of the hydrogeologic framework of the Floridan Aquifer System and delineation of a Major Avon Park permeable zone in central and southern Florida. U.S. Geological Survey Scientific Investigations Report 2007–5207.

    Google Scholar 

  • Rhén, I., Thunehed, H., Triumf, C.-A., Follin, S., Hartley, L., Hermansson, J., & Wahlgren, C.-H. (2007) Development of a hydrogeological model description of intrusive rock at different investigation scales: an example from south-eastern Sweden. Hydrogeology Journal, 15, 47–69.

    Google Scholar 

  • Runkel, A. C., Tipping, R. G., Alexander, E. C., Jr., & Alexander, S. C. (2006) Hydrostratigraphic characterization of intergranular and secondary porosity in part of the Cambrian sandstone aquifer system of the cratonic interior of North America: Improving predictability of hydrogeologic properties. Sedimentary Geology, 184, 281–304.

    Google Scholar 

  • Shapiro, A. M., & Hsieh P.A. (1998) How good are estimates of transmissivity from slug tests in fractured rock? Ground Water, 36, 37–48.

    Google Scholar 

  • Sharp, J. M., Kreisel, I., Milliken, K. L., Mac, R. E., & Robinson, N. I. (1996). Fracture skin properties and effects on solute transport: Geotechnical and environmental implications. In 2nd North American Rock Mechanics Symposium. American Rock Mechanics Association.

    Google Scholar 

  • Singhal, B. B. S., & Gupta, R. P. (2010) Applied hydrogeology of fractured rocks. Dordrecht: Springer.

    Google Scholar 

  • Stearns, D. W., & Friedman. M. (1972) Reservoirs in fractured rock: Geologic exploration methods. In R. E. King (Ed.), Stratigraphic oil and gas fields: classification, exploration methods, and case histories. Memoir 16 (pp. 82–106). Tulsa: American Association of Petroleum Geologists.

    Google Scholar 

  • Streltsova, T. D. (1988) Well testing in heterogeneous formations. New York: John Wiley.

    Google Scholar 

  • Suski, B., Ladner, F., Baron, L., Vuataz, F.-D., Philippossian, F., & Holliger, K. (2008) Detection and characterization of hydraulically active fractures in a carbonate aquifer: results from self-potential, temperature and fluid electrical conductivity logging in the Combioula hydrothermal system in the southwestern Swiss Alps. Hydrogeology Journal, 16, 1319–1328.

    Google Scholar 

  • Tsang, C.-F., Hufschied, P., & Hale, F. V. (1990) Determination of fracture inflow parameters with a borehole fluid conductivity method. Water Resources Research, 26, 561–578.

    Google Scholar 

  • Underwood, C. A., Cooke, M. L., Simo, J. A., & Muldoon, M. A. (2003) Stratigraphic controls on vertical fracture patterns in Silurian dolomite, northeastern Wisconsin. American Association of Petroleum Geologists Bulletin, 87(1), 121–142.

    Google Scholar 

  • Vrba, J., & Verhagen, B. T. (2006) Groundwater for emergency situations. A framework document. International Hydrological Program (IHP) VI, Series on Groundwater No. 12. Paris: UNESCO.

    Google Scholar 

  • Witherspoon, P. A., Wang, J. S. Y., Iwai, K., & Gale, J. E. (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resources Research, 16, 1016–1024.

    Google Scholar 

  • Zeeb, C., Göckus, D., Bons, P., Al Ajmi, H., Rausch, R., & Blum, P. (2010) Fracture flow modelling based on satellite images of the Wajid Sandstone, Saudi Arabia. Hydrogeology Journal, 18, 1699–1712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Maliva .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maliva, R.G. (2016). Fractured Sedimentary Rock Aquifers. In: Aquifer Characterization Techniques. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-319-32137-0_17

Download citation

Publish with us

Policies and ethics