Skip to main content

Evaluation of Aquifer Storage and Aquitard Properties

  • Chapter
  • First Online:
Aquifer Characterization Techniques

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

Abstract

Data on aquifer storage properties (storativity and specific yield) are required for transient groundwater models. Storativity is usually determined from aquifer pumping tests using the Theis method or variations thereof. Quantification of specific yield is much more challenging because of the long time required (especially in fine-grained sediments) for gravity drainage to occur to completion. Evaluation of the properties of aquitards (semi-confining units) may also be a key element of aquifer characterization and modeling investigations. Heterogeneity, particularly a strong scale effect, and very slow groundwater flow rates are the main challenges associated with aquitard characterization. Multiple methods should be employed to evaluate aquifer storage and aquitard properties with the values subject to adjustment during the model calibration process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akindunni, F. F., & Gillham, R. W. (1992) Unsaturated and saturated flow in response to pumping of an unconfined aquifer: Numerical investigation of delayed drainage. Ground Water, 30, 873–884.

    Google Scholar 

  • Bawden, G. W., Sneed, N., Stork, S. V., & Galloway, D. L. (2003) Measuring human-induced land subsidence from space. U.S. Geological Survey Fact Sheet 069-03.

    Google Scholar 

  • Boldt-Leppin, B. E. J., & Hendry, M. J. (2003) Application of harmonic analysis of water levels to determine vertical hydraulic conductivities in clay-rich aquitards. Ground Water, 41, 514–522.

    Google Scholar 

  • Boulton, N. S. (1963) Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage. Institute of Civil Engineers Proceedings (London), 26, 469–482.

    Google Scholar 

  • Boynton, S. S., & Daniel, D. E. (1985) Hydraulic conductivity tests on compacted clay. Journal of Geotechnical Engineering, 111, 465–478.

    Google Scholar 

  • Bredehoeft, J. D., & Papadopoulos, S. S. (1980) A method for determining the hydraulic properties of tight formations. Water Resources Research, 16, 233–238.

    Google Scholar 

  • Clark, W. E. (1967) Computing the barometric efficiency of a well. Journal of the Hydraulics Division, American Society of Civil Engineers, 93(HY4), 93–98.

    Google Scholar 

  • Döll, P., & Scheider, W. (1995) Lab and field measurement of the hydraulic conductivity of clayey silts. Ground Water, 33, 884–891.

    Google Scholar 

  • Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F., & Rosen, P. A. (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resources Research, 34, 2573–2585.

    Google Scholar 

  • Gassmann, F. (1951). Über die elastizität poröser medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 96, 1–23.

    Google Scholar 

  • Gehman, C. L., Harry, D. L., Sanford, W. E., Stednick, J. D., & Beackman, N. A. (2009) Estimating specific yield and storage change in an unconfined aquifer using temporal gravity surveys. Water Resources Research, 45, W00D1.

    Google Scholar 

  • Geldon, A. L., Earle, J. D., & Umari, A. M. A. (1997) Determination of barometric efficiency and effective porosity, boreholes UE-25 c#1, UE-25 c#2, and UE-25 c#3, Yucca Mountain, Nye County, Nevada. U.S. Geological Survey Water-Resources Investigations Report 97-4098.

    Google Scholar 

  • Gonthier, G. J. (2007) A graphical method for estimation of barometric efficiency from continuous data – Concepts and applications to a site in the Piedmont, Air Force Plant 6, Marietta, Georgia. U.S. Geological Survey Scientific Investigations Report 2007-5111.

    Google Scholar 

  • Grimestad, G. (2002) A reassessment of ground water flow conditions and specific yield at Borden and Cape Cod. Ground Water, 40, 14–24.

    Google Scholar 

  • Hanor, J. S. (1993) Effective hydraulic conductivity of fractured clay beds at a hazardous waste landfill, Louisiana Gulf Coast. Water Resources Research, 29, 3691–3698.

    Google Scholar 

  • Hart, D. J., Bradbury, K. R., & Feinstein, D. T. (2006) The vertical hydraulic conductivity of an aquitard at two spatial scales. Ground Water, 44, 201–211.

    Google Scholar 

  • Herzog, B. L., & Morse, W. J. (1986) Hydraulic conductivity at a hazardous waste disposal site: comparison of laboratory and field-determined values. Waste Management & Research, 4(2), 177–187.

    Google Scholar 

  • Hoffmann, J., Galloway, D. L., & Zebker, H. A. (2003) Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resources Research, 39(2), SBH 5-1−5-13.

    Google Scholar 

  • Hoffmann, J., Zebker, H. A., Galloway, D. L., & Amelug, F. (2001) Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resources Research, 37, 1551–1566.

    Google Scholar 

  • Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (2010) An introduction to geotechnical engineering (2nd ed.). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Holzer, T. L., & Galloway, D. L. (2005) Impacts of land subsidence caused by withdrawal of underground fluids in the United States. In J. Ehlen, W. C. Haneberg, & R. A. Larson (Eds.), Humans as geologic agents. Reviews in Engineering Geology 16 (pp. 87–99). Boulder: Geological Society of America.

    Google Scholar 

  • Hvorslev, J. (1951) Time lag and soil permeability in ground-water observations. Bulletin No. 36. Vicksburg, Mississippi: Waterways Experimental Station, U.S. Army Corps of Engineers.

    Google Scholar 

  • Jacob, C. E. (1940) On the flow of water in an elastic artesian aquifer. American Geophysical Union Transactions, Part 2, 574–586.

    Google Scholar 

  • Johnson, A. I. (1967) Specific yield – Compilation of specific yields for various materials. U.S. Geological Survey Water-Supply Paper 1662-D.

    Google Scholar 

  • Keller, C. K., Van der Kamp, G., & Cherry, J. A. (1989) A multiscale study of the permeability of a thick clayey clayey till. Water Resources Research, 25, 2299–2317.

    Google Scholar 

  • Kruseman, G. P. & de Ridder, N. A. (1991) Analysis and evaluation of pumping test data (Publication 47). Wageningen: International Institute for Land Reclamation and Improvement.

    Google Scholar 

  • Logsdon, S. D., Schilling, K. E., Hernandez‐Ramirez, G., Prueger, J. H., Hatfield, J. L., & Sauer, T. J. (2010). Field estimation of specific yield in a central Iowa crop field. Hydrological Processes, 24(10), 1369–1377.

    Google Scholar 

  • Lohman, S. W. (1972) Ground-water hydraulics. U.S. Geological Survey Professional Paper 708.

    Google Scholar 

  • Maréchal, J. C., Dewandel, B., Ahmed, S., Galeazzi, L., & Zaidi, F. K. (2006). Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. Journal of Hydrology, 329(1), 281–293.

    Google Scholar 

  • McKay, L. D., Cherry, J. A., & Gillham, R.W. (1993) Field experiments in a fractured clay till. 1. Hydraulic conductivity and fracture aperture. Water Resources Research, 29, 1149–1162.

    Google Scholar 

  • Moench, A. F. (1994) Specific yield as determined by type-curve analysis of aquifer-test data. Ground Water, 32, 949–957.

    Google Scholar 

  • Neuman, S. P. (1975) Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response. Water Resources Research, 11, 329–342.

    Google Scholar 

  • Neuman, S. P. (1987) On methods of determining specific yield. Ground Water, 25, 679–684.

    Google Scholar 

  • Neuman, S. P., & Witherspoon, P. A. (1972). Field determination of the hydraulic properties of leaky multiple aquifer systems. Water Resources Research, 8(5), 1284–1298.

    Google Scholar 

  • Neuzil, C. E. (1982) On conducting the modified ‘slug test’ in tight formations. Water Resources Research, 18, 233–238.

    Google Scholar 

  • Neuzil, C. E. (1986) Groundwater flow in low-permeability environments. Water Resources Research, 22, 1163–1195.

    Google Scholar 

  • Nwankwor, G. I., Cherry, J. A., & Gillham, R.W. (1984) A comparative study of specific yield determinations for a shallow sand aquifer. Ground Water, 22(6), 764–772.

    Google Scholar 

  • Nwankwor, G. I., Gillham, R.W., van der Kamp, G., & Akindunni, F. F. (1992) Unsaturated and saturated flow in response to pumping of an unconfined aquifer: field evidence of delayed drainage. Ground Water, 30, 690–700.

    Google Scholar 

  • Pavelko, M. T. (2004) Estimates of hydraulic properties from a one-dimensional numerical model of vertical aquifer-system deformation, Lorenzi Site, Las Vegas, Nevada. U.S. Geological Survey Water-Resources Investigation Report 03–4083.

    Google Scholar 

  • Pool, D. R. (2008) The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona. Geophysics, 73(6), WA49-WA59.

    Google Scholar 

  • Pool, D. R., & Eychaner, J. H. (1995) Measurement of aquifer-storage change and specific yield using gravity surveys. Ground Water, 33, 425–432.

    Google Scholar 

  • Pool, D. R., & Schmidt, W. (1997) Measurement of ground-water storage change and specific yields using the temporal-gravity method near Rillito Creek, Tucson, Arizona. U.S. Geological Survey Water Resources Investigations Report 97–4125.

    Google Scholar 

  • Pope, J. P., & Burbey, T. J. (2004) Multiple aquifer characterization from single borehole extensometer record. Ground Water, 42, 45–58.

    Google Scholar 

  • Riley, F. S. (1969) Analysis of borehole extensometer data from central California. In L. J. Tison (Ed.), Land subsidence. Publication 89 (pp. 423–431). International Association of Scientific Hydrology.

    Google Scholar 

  • Robson, S. G., & Banta, E. R. (1990) Determination of specific storage by measurements of aquifer compression near a pumping well. Ground Water, 28, 868–874.

    Google Scholar 

  • Rowe, R. K., & Nadarajah, P. (1993) Evaluation of the hydraulic conductivity of aquitards. Canadian Geotechnical Journal, 30, 781–800.

    Google Scholar 

  • Shaver, R. B. (1998) The determination of glacial till specific storage in North Dakota. Ground Water, 36, 552–557.

    Google Scholar 

  • Sneed, M., & Galloway, D. L. (2000) Aquifer-system compaction: Analyses and simulations-the Holly Site, Edwards Air Force Base, Antelope Valley, California. U.S. Geological Survey Water-Resources Investigations Report 00-4015.

    Google Scholar 

  • Shoemaker, W. B., Lopez, C. D., & Duever, M. J. (2011) Evapotranspiration over spatially extensive plant communities in the Big Cypress National Preserve, southern Florida, 2007–2010. U.S. Geological Survey Scientific Investigations Report 2011-5212.

    Google Scholar 

  • Terzaghi, C. (1925) Principles of Soil Mechanics. Engineering News-Record, 95, 832–836.

    Google Scholar 

  • Timms, W. A., & Acworth, R. I. (2005) Propagation of pressure change through thick clay sequences: an example from Liverpool Plains, NSW, Australia. Hydrogeology Journal, 13, 858–870.

    Google Scholar 

  • Van de Kamp, G. (2001) Methods for determining the in situ hydraulic conductivity of shallow aquitards – an overview. Hydrogeology Journal, 9, 5–16.

    Google Scholar 

  • Weeks, E. P. (2002) The Lisse effect revisited. Ground Water, 40, 652–656.

    Google Scholar 

  • Yan, T., & Burbey, T. J. (2008) The value of subsidence data in groundwater model calibration. Ground Water, 46, 538–550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Maliva .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maliva, R.G. (2016). Evaluation of Aquifer Storage and Aquitard Properties. In: Aquifer Characterization Techniques. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-319-32137-0_14

Download citation

Publish with us

Policies and ethics