Skip to main content

State of the Art of Homomorphic Signature Schemes

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

In this chapter the state of the art with respect to homomorphic signature schemes is presented. Due to the large number and the different properties they satisfy, they are discussed in separate groups, according to the computations they support. The linearly homomorphic signature schemes are further divided with respect to the hardness assumption they rely on. Afterwards, the existing homomorphic signature schemes for polynomial functions and the fully homomorphic ones are described. Regarding the existing homomorphic signature schemes for the multi-users case, the linearly homomorphic aggregate signature schemes and the multiple sources linearly homomorphic signature schemes are presented separately. The investigated properties are the ones introduced in the previous section. For each scheme the underlying hardness assumption is specified, then we provide information about the efficiency of the schemes and their signature’s length. Afterwards, the general safety of the scheme is discussed: which adversary the signature can cope with and which level of privacy it achieves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahn JH, Boneh D, Camenisch J, Hohenberger S, Waters B et al (2012) Computing on authenticated data. In: Theory of cryptography. Springer, Berlin, pp 1–20

    Chapter  Google Scholar 

  2. Attrapadung N, Libert B (2011) Homomorphic network coding signatures in the standard model. In: Public key cryptography–PKC 2011. Springer, Berlin, pp 17–34

    Chapter  Google Scholar 

  3. Attrapadung N, Libert B, Peters T (2012) Computing on authenticated data: new privacy definitions and constructions. In: Advances in cryptology–ASIACRYPT 2012. Springer, Berlin, pp 367–385

    Chapter  Google Scholar 

  4. Attrapadung N, Libert B, Peters T (2013) Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Public-key cryptography–PKC 2013. Springer, Berlin, pp 386–404

    Chapter  Google Scholar 

  5. Boneh D, Boyen X (2004) Short signatures without random oracles. In: Advances in cryptology–EUROCRYPT 2004. Springer, Berlin, pp 56–73

    Chapter  Google Scholar 

  6. Boneh D, Boyen X (2011) Efficient selective identity-based encryption without random oracles. J Cryptol 24(4):659–693

    Article  MathSciNet  MATH  Google Scholar 

  7. Boneh D, Freeman DM (2011) Homomorphic signatures for polynomial functions. In: Advances in cryptology–EUROCRYPT 2011. Springer, Berlin, pp 149–168

    Chapter  Google Scholar 

  8. Boneh D, Freeman DM (2011) Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Public key cryptography–PKC 2011. Springer, Berlin, pp 1–16

    Chapter  Google Scholar 

  9. Boneh D, Freeman D, Katz J, Waters B (2009) Signing a linear subspace: signature schemes for network coding. In: Public key cryptography–PKC 2009. Springer, Berlin, pp 68–87

    Chapter  Google Scholar 

  10. Boyen X, Fan X, Shi E (2014) Adaptively secure fully homomorphic signatures based on lattices

    Google Scholar 

  11. Catalano D, Fiore D, Warinschi B (2011) Adaptive pseudo-free groups and applications. In: Advances in cryptology–EUROCRYPT 2011. Springer, Berlin, pp 207–223

    Chapter  Google Scholar 

  12. Catalano D, Fiore D, Warinschi B (2012) Efficient network coding signatures in the standard model. In: Public key cryptography–PKC 2012. Springer, Berlin, pp 680–696

    Chapter  Google Scholar 

  13. Catalano D, Fiore D, Warinschi B (2014) Homomorphic signatures with efficient verification for polynomial functions. In: Advances in cryptology–CRYPTO 2014. Springer, Berlin, pp 371–389

    Chapter  Google Scholar 

  14. Charles D, Jain K, Lauter K (2009) Signatures for network coding. Int J Inf Coding Theory 1(1):3–14

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng C, Jiang T, Liu Y, Zhang M (2015) Security analysis of a homomorphic signature scheme for network coding. Secur Commun Netw

    Google Scholar 

  16. Coron J-S, Lepoint T, Tibouchi M (2015) New multilinear maps over the integers. Technical report, Cryptology ePrint Archive, Report 2015/162. http://eprint.iacr.org

    Google Scholar 

  17. Czap L, Vajda I (2010) Signatures for multisource network coding. Technical report, ArXiv

    Google Scholar 

  18. Dong J, Curtmola R, Nita-Rotaru C (2011) Practical defenses against pollution attacks in wireless network coding. ACM Trans Inf Syst Secur 14(1):7

    Article  Google Scholar 

  19. Freeman DM (2012) Improved security for linearly homomorphic signatures: a generic framework. In: Public key cryptography–PKC 2012. Springer, Berlin, pp 697–714

    Chapter  Google Scholar 

  20. Gennaro R, Halevi S, Rabin T (1999) Secure hash-and-sign signatures without the random oracle. In: Advances in cryptology–EUROCRYPT 1999. Springer, Berlin, pp 123–139

    Google Scholar 

  21. Gennaro R, Katz J, Krawczyk H, Rabin T (2010) Secure network coding over the integers. In: Public key cryptography–PKC 2010. Springer, Berlin, pp 142–160

    Chapter  Google Scholar 

  22. Gentry C (2009) Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st annual ACM symposium on theory of computing, STOC 2009, Bethesda, MD, May 31–June 2, 2009, pp 169–178

    Google Scholar 

  23. Gentry C, Peikert C, Vaikuntanathan V (2008) Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the fortieth annual ACM symposium on theory of computing. ACM, New York, pp 197–206

    Google Scholar 

  24. Gentry C, Sahai A, Waters B (2013) Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in cryptology – CRYPTO 2013 – 33rd annual cryptology conference, Santa Barbara, CA, August 18–22, 2013. Proceedings, Part I, pp 75–92

    Google Scholar 

  25. Gorbunov S, Vaikuntanathan V, Wichs D (2015) Leveled fully homomorphic signatures from standard lattices. In: Proceedings of the forty-seventh annual ACM on symposium on theory of computing, STOC 2015, Portland, OR, June 14–17, 2015, pp 469–477

    Google Scholar 

  26. Guangjun L, Bin W (2013) Secure network coding against intra/inter-generation pollution attacks. Communications, China 10(8):100–110

    Article  Google Scholar 

  27. Hiromasa R, Manabe Y, Okamoto T (2013) Homomorphic signatures for polynomial functions with shorter signatures. In: The 30th symposium on cryptography and information security, Kyoto

    Google Scholar 

  28. Hohenberger S, Waters B (2009) Short and stateless signatures from the RSA assumption. In: Advances in cryptology–CRYPTO 2009. Springer, Berlin, pp 654–670

    Chapter  Google Scholar 

  29. Jing Z (2014) An efficient homomorphic aggregate signature scheme based on lattice. Math Probl Eng

    Google Scholar 

  30. Lee S-H, Gerla M, Krawczyk H, Lee K-W, Quaglia EA (2011) Performance evaluation of secure network coding using homomorphic signature. In: 2011 International symposium on network coding (NetCod). IEEE, New York, pp 1–6

    Chapter  Google Scholar 

  31. Libert B, Peters T, Joye M, Yung M (2015) Linearly homomorphic structure-preserving signatures and their applications. Des Codes Crypt 77(2–3):441–477

    Article  MathSciNet  MATH  Google Scholar 

  32. Shao J, Zhang J, Ling Y, Ji M, Wei G, Ying B (2013) Multiple sources network coding signature in the standard model. In: Internet and distributed computing systems. Springer, Berlin, pp 195–208

    Chapter  Google Scholar 

  33. Wang Y (2010) Insecure “provably secure network coding” and homomorphic authentication schemes for network coding. IACR Cryptology ePrint Archive, 2010:60

    Google Scholar 

  34. Wang F, Hu Y, Wang B (2013) Lattice-based linearly homomorphic signature scheme over binary field. Sci China Inf Sci 56(11):1–9

    MathSciNet  Google Scholar 

  35. Wang F, Wang K, Li B, Gao Y (2015) Leveled strongly-unforgeable identity-based fully homomorphic signatures. In: Information security. Springer, Berlin, pp 42–60

    Chapter  Google Scholar 

  36. Waters B (2005) Efficient identity-based encryption without random oracles. In: Advances in cryptology–EUROCRYPT 2005. Springer, Berlin, pp 114–127

    Chapter  Google Scholar 

  37. Yan W, Yang M, Li L, Fang H (2012) Short signature scheme for multi-source network coding. Comput Commun 35(3):344–351

    Article  Google Scholar 

  38. Yu Z, Wei Y, Ramkumar B, Guan Y (2008) An efficient signature-based scheme for securing network coding against pollution attacks. In: INFOCOM 2008. The 27th conference on computer communications. IEEE. IEEE, New York

    Google Scholar 

  39. Yun A, Cheon JH, Kim Y (2010) On homomorphic signatures for network coding. IEEE Trans Comput (9):1295–1296

    Article  MathSciNet  Google Scholar 

  40. Zhang N (2010) Signatures for network coding

    Google Scholar 

  41. Zhang P, Yu J, Wang T (2012) A homomorphic aggregate signature scheme based on lattice. Chin J Electron 21(4):701–704

    MathSciNet  Google Scholar 

  42. Zhang J, Shao J, Ling Y, Ji M, Wei G, Ying B (2014) Efficient multiple sources network coding signature in the standard model. Concurr Comput Pract Exp

    Google Scholar 

  43. Zhao F, Kalker T, Médard M, Han KJ (2007) Signatures for content distribution with network coding. In: IEEE international symposium on information theory, 2007. ISIT 2007. IEEE, New York, pp 556–560

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Traverso, G., Demirel, D., Buchmann, J. (2016). State of the Art of Homomorphic Signature Schemes. In: Homomorphic Signature Schemes. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-32115-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32115-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32114-1

  • Online ISBN: 978-3-319-32115-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics