Skip to main content

Rotation Minimizing Vector Fields andĀ Frames in Riemannian Manifolds

  • Chapter
  • First Online:
Geometry, Algebra and Applications: From Mechanics to Cryptography

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 161))

Abstract

We prove that a normal vector field along a curve in \(\mathbb {R}^{3}\) is rotation minimizing (RM) if and only if it is parallel respect to the normal connection. This allows us to generalize all the results of RM vectors and frames to curves immersed in Riemannian manifolds.

Dedicated to Jaime MuƱoz MasquƩ, with a deep gratitude for his generous assistance in the earlier years of my career, on the occasion of his 65th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anco, S.C.: Group-invariant soliton equations and bi-Hamiltonian geometric curve flows in Riemannian symmetric spaces. J. Geom. Phys. 58, 1ā€“37 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Bartoň, M., JĆ¼ttler, B., Wang, W.: Construction of rational curves with rational rotation-minimizing frames via Mƶbius transformations. Mathematical Methods for Curves and Surfaces. Lecture Notes in Computer Science, vol. 5862, pp. 15ā€“25. Springer, Berlin (2010)

    Google ScholarĀ 

  3. Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Mon. 82, 246ā€“251 (1975)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  4. CastrillĆ³n LĆ³pez, M., FernĆ”ndez Mateos, V., MuƱoz MasquĆ©, J.: Total curvature of curves in Riemannian manifolds. Differ. Geom. Appl. 28, 140ā€“147 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  5. Clauvelin, N., Olson, W.K., Tobias, I.: Characterization of the geometry and topology of DNA pictured as a discrete collection of atoms. J. Chem. Theory Comput. 8(3), 1092ā€“1107 (2012)

    ArticleĀ  Google ScholarĀ 

  6. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATHĀ  Google ScholarĀ 

  7. Farouki, R.T.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Geometry and Computing, vol. 1. Springer, Berlin (2008)

    BookĀ  MATHĀ  Google ScholarĀ 

  8. Gianelli, C.: Rational moving frames on polynomial space curves: theory and applications. Ph.D. Thesis, UniversitĆ  degli studi di Firenze, Florence (2009)

    Google ScholarĀ 

  9. Gutkin, E.: Curvatures, volumes and norms of derivatives for curves in Riemannian manifolds. J. Geom. Phys. 61, 2147ā€“2161 (2011)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. Kawakubo, S.: Kirchhoff elastic rods in five-dimensional space forms whose centerlines are not helices. J. Geom. Phys. 76, 158ā€“168 (2014)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  11. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I and II. Interscience Publishers (a division of Wiley), New York (1963, 1969)

    Google ScholarĀ 

  12. Langer, J.: Recursion in curve geometry. New York J. Math. 5, 25ā€“51 (1999)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  13. MarĆ­ Beffa, G.: Poisson brackets associated to invariant evolutions of Riemannian curves. Pac. J. Math. 215(2), 357ā€“380 (2004)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. McCreary, P.R.: Visualizing Riemann surfaces, TeichmĆ¼ller spaces, and transformations groups on hyperbolic manifolds using real time interactive computer animator (RTICA) graphics. Ph.D. Thesis, University of Illinois at Urbana-Champaign (1998)

    Google ScholarĀ 

  15. Moulton, D.E., Goriely, A.: Surface growth kinematics via local curve evolution. J. Math. Biol. 68(1ā€“2), 81ā€“108

    Google ScholarĀ 

  16. MuƱoz MasquĆ©, J., RodrĆ­guez SĆ”nchez, G.: Frenet theorem for spaces of constant curvature. Geometry from the Pacific Rim (Singapore, 1994), 253ā€“259, de Gruyter, Berlin (1997)

    Google ScholarĀ 

  17. Ɩzdemir, M., Ergin, A.A.: Parallel frame of non-lightlike curves. Missouri J. Math. Sci. 20(2), 1ā€“10 (2008)

    MATHĀ  Google ScholarĀ 

  18. Poor, W.A.: Differential Geometric Structures. McGraw-Hill Book Co., New York (1981)

    MATHĀ  Google ScholarĀ 

  19. Postnikov, M.: Lectures in Geometry. Semester III. Mir, Moscow (1989)

    MATHĀ  Google ScholarĀ 

  20. Sanders, J.A., Wang, J.P.: Integrable systems in n-dimensional Riemannian geometry. Mosc. Math. J. 3(4), 1369ā€“1393 (2003)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  21. Singer, D.A.: Lectures on elastic curves and rods. Curvature and Variational Modeling in Physics and Biophysics. In: AIP Conference Proceedings, vol. 1002, pp. 3ā€“32 (2008)

    Google ScholarĀ 

  22. Wang, W., JĆ¼ttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Trans. Graph. (TOG) 27(1), 1ā€“18 (2008)

    Google ScholarĀ 

Download references

Acknowledgments

The author wants to express his gratitude to his colleagues Marco CastrillĆ³n, Laureano GonzĆ”lez-Vega, Bert JĆ¼tler and Gema Quintana for the useful talks about the theory of RM vectors and frames.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Etayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Etayo, F. (2016). Rotation Minimizing Vector Fields andĀ Frames in Riemannian Manifolds. In: CastrillĆ³n LĆ³pez, M., HernĆ”ndez Encinas, L., MartĆ­nez Gadea, P., Rosado MarĆ­a, M. (eds) Geometry, Algebra and Applications: From Mechanics to Cryptography. Springer Proceedings in Mathematics & Statistics, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-319-32085-4_8

Download citation

Publish with us

Policies and ethics