Skip to main content

Supermanifolds, Symplectic Geometry and Curvature

  • Chapter
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 161))

Abstract

We present a survey of some results and questions related to the notion of scalar curvature in the setting of symplectic supermanifolds.

Jaime Muñoz-Masqué, maestro y amigo, en su 65 aniversario

Dedicated to Muñoz-Masqué, teacher and friend, on his 65th birth anniversary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is not a great loss of generality in view of the existence of the vector bundle isomorphism \({\textit{TM}}\rightarrow E\), between \({\textit{TM}}\) and the Batchelor bundle, already mentioned in the Introduction (see [13]), so the changes needed to deal with the most general case are mainly notational.

  2. 2.

    In a technical sense that we will not describe here. See [12] for the details.

  3. 3.

    In particular, is not a tensor, hence the difference in notation.

References

  1. Batalin, I.A., Bering, K.: Odd scalar curvature in field-antifield formalism. J. Math. Phys. 49, 033515 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batalin, I.A., Bering, K.: Odd scalar curvature in anti-Poisson geometry. Phys. Lett. B 663(1–2), 132–135 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blaga, P.A.: Symplectic connections on supermanifolds: existence and non-uniqueness. Studia Univ. Babes-Bolyai Math. 58(4), 477–483 (2013)

    MathSciNet  MATH  Google Scholar 

  4. De Castro, A., Martín, I., Quevedo, L., Restuccia, A.: Noncommutative associative superproduct for general supersymplectic forms. J. High Energy Phys. 0808, 009 (2008)

    Article  MathSciNet  Google Scholar 

  5. Fedosov, B.V.: A simple geometrical construction of deformation quantization. J. Diff. Geom. 40(2), 213–238 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Frlicher, A., Nijenhuis, A.: Theory of vector valued differential forms. Part I. Indag. Math. 18, 338–360 (1956)

    Article  Google Scholar 

  7. Gelfand, I., Retakh, V., Shubin, M.: Fedosov manifolds. Adv. Math. 136(1), 104–140 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Geyer, B., Lavrov, P.M.: Fedosov supermanifolds: basic properties and the difference in even and odd cases. Int. J. Modern Phys. A 19, 3195 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hernández-Amador, R.: Ph.D. Thesis, Universidad de Sonora, México, in preparation (2015)

    Google Scholar 

  10. Jacobson, T., Smolin, L.: The left-handed spin connection as a variable for canonical gravity. Phys. Lett. B 196, 39–42 (1987)

    Article  MathSciNet  Google Scholar 

  11. Kosmann-Schwarzbach, Y., Monterde, J.: Divergence operators and odd Poisson brackets. Ann. Inst. Fourier 52, 419–456 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kostant, B.: Graded manifolds, graded Lie theory, and prequantization. Differential Geometrical Methods in Mathematical Physics. Lecture Notes in Mathematics, vol. 570, pp. 177–306 (1977)

    Google Scholar 

  13. Monterde, J.: A characterization of graded symplectic structures. Diff. Geom. Appl. 2, 81–97 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Monterde, J., Muñoz-Masqué, J., Vallejo, J.A.: The structure of Fedosov supermanifolds. J. Geom. Phys. 59, 540–553 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Salgado, G., Vallejo, J.A.: The meaning of time and covariant superderivatives in supermechanics. Adv. Math. Phys. (2009) Article ID 987524

    Google Scholar 

  16. Vallejo, J.A.: Symplectic connections and Fedosov’s quantization on supermanifolds. J. Phys. Conf. Ser. 343, 012124 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

JM was supported by a Spanish Ministry of Science and Innovation project code MTM2012-33073. JV was supported by a CONACyT (México) project code CB-2012-179115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Vallejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hernández-Amador, R., Monterde, J., Vallejo, J. (2016). Supermanifolds, Symplectic Geometry and Curvature. In: Castrillón López, M., Hernández Encinas, L., Martínez Gadea, P., Rosado María, M. (eds) Geometry, Algebra and Applications: From Mechanics to Cryptography. Springer Proceedings in Mathematics & Statistics, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-319-32085-4_12

Download citation

Publish with us

Policies and ethics