Skip to main content

Composite Materials for Musical Instruments

  • Chapter
  • First Online:

Abstract

The development of composite materials as substitutes for wood in musical instruments was motivated by numerous factors, such as the fragility of instruments during handling and transportation, their sensitivity to temperature and humidity variations, the scarcity of wood resources (resonance spruce and tropical hardwoods), the high variability of wood material, and the very high level of craftsmanship required.  We discusse the properties of composites made with synthetic and natural fibres and nanocomposites which are the newest developments. The potential and limitation of fiber reinforced composites depend on the properties of the constituents, the fibres and the matrix. The soundboards made from composite materials should match two basic requirements, the stiffness per unit length and density per unit area of an ideal material (i.e. spruce tonewood). Matching criteria were deduced from theoretical studies of the vibration of thin orthotropic plates. Based on these criteria a substitute material for the soundboard of a concert harp was produced, which is a remarkable achievement. In 2012 it was possible to produce a grand piano made entirely in composite materials. It is pleasing to note that during the last decades, numerous string instruments for advanced students or mass production instruments have been successfully produced using composite materials to replace tonewood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley

    Google Scholar 

  • Allen WD (1994) Non aerospace applications for advanced composites raw materials. SME Techn. Paper Ser EM, EM94-122/1-8

    Google Scholar 

  • Andrejko B, Griffin W, Harper T, Kosta S, Mohammed M (2008) Composite acoustic guitar. Senior Design Group MEM 12

    Google Scholar 

  • Archee R (2014) The Australian school of Lutherie: origins and achievements. Int J Humanit Soc Sci 4(1):101–104

    Google Scholar 

  • ASTM 1287-01 (2001) Standard test method for dynamic Young’s modulus and shear modulus and Poisson’s ratios by impulse excitation of vibration. Am Soc Test Mater

    Google Scholar 

  • Berthaut J (1969) Laminated soundboards for a string instrument. US Patent

    Google Scholar 

  • Berthelot JM (1999) Composite materials—mechanical behaviour and structural analysis. Springer Verlag, New York

    Google Scholar 

  • Besnainou C (1998) Composite materials for musical instruments: the maturity. J Acoust Soc Am 103(5):2872–2873

    Article  Google Scholar 

  • Caldersmith G (2012) Guitar maker. http://www.caldersmithguitars.com/25/April2012

  • Caldersmith G, Williams J (1986) Meet Greg Smallman. American lutherie 8:30–34

    Google Scholar 

  • Calleton RL, Choong ET, McIlhenny RC (1970) Treatments of Southern Pine with vinyl chloride and metyhyl methacrylates for radiation—produced wood—plastic combinations. Wood Sci Techn 4:216–225

    Article  Google Scholar 

  • Carlsson P, Tinnsten M (2003) Optimization of a violin top with a combined laminate theory and honeycomb model of wood. Holzforschung 57:101–105

    Article  Google Scholar 

  • Carey M (2003) Improving the soundboard of the concert harp using engineered composite materials. Thesis, Univ of Illinois, Chicago, Master of Sc

    Google Scholar 

  • Carey M, Royston TJ (2003) Structural dynamics of concert harps with wooden and composite material soundboards. In: Proceedings of 145th meeting of acoustical society of America (abstract only)

    Google Scholar 

  • Cerruti P, Ambrogi V, Postiglione A et al (2008) Morphological and thermal properties of cellulose-montmorillonite nanocomposites. Biomacromolecules 9:3004–3013

    Article  Google Scholar 

  • Cock RL, Cock DM, Glassy DF, Peterson EJ (1997) Un-wood violin. Int SAMPE Symp Exhib 42(1):601–613

    Google Scholar 

  • Curtin J (1999a) Space—age Stradivari. Lutherie for the 21st century, innovative composite-fibre instruments. The Strad Mag 110(1308):374–379

    Google Scholar 

  • Curtin J (1999b) Project EVIA. Guild of American Luthiers—American Lutherie J, no. 60, winter, 7 pp

    Google Scholar 

  • Curtu I, Stanciu MD, Grimberg R (2008) Correlations between the plates’ vibrations from the guitar’s structure and the physical, mechanical and elastically characteristics of the composite materials. In: Proceedings of 9th WSEAS international conference on acoustics & music, theory and applications, AMIA ’08. June 24–28, Bucharest, pp 55–60

    Google Scholar 

  • Damodaran A, Lessard L, Babu AS (2015) An overview of fibre-reinforced composites for musical instrument soundboards. Acoust Aust, 43(1):117–122

    Google Scholar 

  • Decker Jr JA (1993) Graphite/epoxy acoustic guitar technology. In: Proceedings of 38th International SAMPE Symposium, vol 38, issue 1, pp 282–292, May 10–13

    Google Scholar 

  • Decker JA Jr (1995) Graphite epoxy acoustic guitar technology. MRS Bull 20(3):37–39

    Article  Google Scholar 

  • Decker Jr JA (1997) Production technology: commercial composite-materials acoustic guitars. In: Proceedings of 42 international SAMPE symposium, pp 382–392, May 4–8

    Google Scholar 

  • Dominy J, Killingback P (2009) The development of a carbon fibre violin. In: Proceedings of 17th ICCM international conference composite material. Edinburgh, UK, 9p. 27–31 July. http://www.iccm-central.org/Proceedings/ICCM17proceedings/Themes/Industry/OTHER%20APPLICATIONS/A6.2%20Dominy.pdf

  • Ege K (2009) La table d’harmonie du piano. Études modales en basses et moyennes fréquences (Doctoral dissertation, Ecole Polytechnique-X- de Paris). http://tel.archives-ouvertes.fr/docs/00/46/07/83/PDF/These_Ege.pdf

  • Ege K, Caron JF, Marcadet H, Martin H (2010) Remplacement de la table d’harmonie du violon par un sandwich balsa/fibre de lin. Journées Scientifiques et Techniques AMAC “Matériaux composites renforcés par des fibres végétales”. Lorient, France

    Google Scholar 

  • Ellis D (2000) Wood-polymer composites: review of processes and properties. Mol Cryst Liq Cryst 353:75–84

    Article  Google Scholar 

  • Gerken T (1999) Beyond rosewood and spruce: how guitar makers are using space-age composite materials to create new designs and new sounds. Acoustic Guitar 10(3):74–81

    Google Scholar 

  • Gore T, Gilet G (2010) Contemporary acoustic guitar design and build. Privately published by the authors

    Google Scholar 

  • Haines DW, Cheng N (1975a) Application of graphite composites in musical instruments. ASME Paper. 75—DE—27, 4 p

    Google Scholar 

  • Haines DW, Cheng N (1975b) Application of graphite composites in musical instruments. Catgut Acoust Sc. Newsl 23: 13–15

    Google Scholar 

  • Haines D, Chang N, Hutchins M, Hutchins C (1975) Violin with a graphite—epoxy plate. J Acoust Soc Am 57(supplement no. 1): s21–s22

    Google Scholar 

  • Haines D, Chang N, Thompson DA, (1974) J Acoust Soc Am 55(Suppl: S49A

    Google Scholar 

  • Horbanluekit B, Renard J, Chevalier Y, Espié L (2000) Comparaison des propriétés viscoélastiques des composites anisotropes et des bois de lutherie. Rev Comp Mat Avancés 10:289–301

    Google Scholar 

  • Hutchins C (1975) Three violin by Carleen Hutchins, Montclair New Jersey, Daniel Haines, Columbia South Carolina and Hercules Materials Comp. Inc. (Allegheny Ballistics Laboratory), Cumberland Maryland. www.usd.edu/smm/Archives/NewViolinFamily/Hutchinsgraphiteviolin.html

  • Jahnel F (1981) Manual of guitar technology. Verlg Das Musikinstrument, Frankfurt am Mein

    Google Scholar 

  • Jones RM (1998) Mechanics of composite materials, 2nd edn. Taylor and Francis Group, New York

    Google Scholar 

  • Laverty R (2002) Advanced engineered wood composites. Forest Prod J 52(11/12):18–26

    Google Scholar 

  • Lin HJ, Wang CN, Kuo YM (2007) Sound transmission loss across specially orthotropic laminates. Appl Acoust 68:1177–1191

    Article  Google Scholar 

  • Luis and Clark (2011) The world’s finest carbon fiber stringed instruments. http://www.louisandclark.com/. Access 7 Nov 2011

  • Marcadet S, Martin H (2009) Etude acoustique et conception d’une table d’harmonie de violon en matériaux composites. Rapport- Module expérimentale de Mécanique—matériaux composites; Ecole Polytechnique de Paris, France

    Google Scholar 

  • Matsubara T, Nishiwaki T, Maekawa Z (2000) Design of FRP material for musical instruments. Part 1 Vibration property of material substitutes. Seni Kikai Gakkai Shi 53(11):49–55. Part 2 Numerical modeling of heterogeneity. Seni Kikai Gakkai Shi 54(9): 53–59

    Google Scholar 

  • Matsumoto T, Yamada T (1973) Soundboards for string instruments having plastic foam body with harder outer layers, U.S. Patent 3,724,312

    Google Scholar 

  • Narayanamurti D, Jayaraman MT, Thacker R, Anantanarayanan S (1970) Note on radiation processed wood-plastic materials. Wood Sci Techn 4:226–236

    Article  Google Scholar 

  • Norman E (2003) Innovation in design and technology: the polymer acoustic guitar and the case for the relegation of the design process. DATA Int Res Conf 2003:91–97

    Google Scholar 

  • Ono T, Miyakoshi S, Watanabe U (2002) Acoustic characteristics of unidirectionally fiber-reinforced polyurethane foam composites for musical instrument soundboards. Acoust Sci Techn 23(3):135–142

    Article  Google Scholar 

  • Ono T, Okuda A (2007) Acoustic characteristics of guitars with a top board of carbon fiber-reinforced composites. Acoust Sci Techn 28(6):442–443. https://www.jstage.jst.go.jp/article/ast/28/6/28_6_442/_pdf

    Google Scholar 

  • Ono T, Isamura D (2004) Acoustic characteristics of carbon fiber-reinforced synthetic wood for musical instrument soundboards. Acoust Sci Techn 25:475–477

    Article  Google Scholar 

  • Pedgley O, Norman E, Anrmstrong R (2009) Materials-inspired innovation for acoustic design. Metu J Fac Archit 157–175

    Google Scholar 

  • Phillips S (2012) Application of natural fiber composites to musical instruments top plates. J Comp Mat 46(2):145–154

    Article  Google Scholar 

  • Phillips S, Lessard L (2009) Flax fibers in musical instrument soundboards. In: Proceedings of 17th ICCM International Conference on Composite Materials 27–31 July

    Google Scholar 

  • Phillips S, Lessard L (2012) Application of natural fiber composites to musical instrument top plates. J Compos Mater 46:145–154

    Google Scholar 

  • Pickering K (ed) (2008) Properties and performance of natural fibre composites. Woodhead Publ, Limited, Cambridge UK

    Google Scholar 

  • Pilato LA, Michno MJ (1994) Advanced composite materials, Chapter 11.8.8 Musical instruments: 185. Springer Verlag, Berlin

    Google Scholar 

  • Potter K (1996) An Introduction to Composite Products: Design, Development and Manufacture, 5th edn. Springer, Chapman & Hall, London

    Google Scholar 

  • Preissner C (2001) Improvement of the concert harp through the application of non-destructive evaluation and fibre composites. Master of Sci Thesis, University of Illinois, Chicago

    Google Scholar 

  • Preissner C, Royston TJ (1998) Vibroacoustic properties of a composite harp soundboard. J Acoust Soc Am 104:1767 (abstract only)

    Google Scholar 

  • Reilly RM (2014) Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. J. Nuclear Med. 48:1039–1042

    Article  Google Scholar 

  • Richardson BE (1986) Wood for guitar. In: Proceedings of the institute of acoustics, UK. vol 18, issue 1, pp 107–112

    Google Scholar 

  • Rossing TD, Fletcher N (2004) Principles of vibration and sound, 2nd edn. Springer Verlag, New York

    Book  Google Scholar 

  • Rossing TD (1982) Plate vibrations and applications to guitars. J. Guitar Acoustics 6:65–73

    Google Scholar 

  • Roxworthy JS (2008) Development of a carbon fiber composite material soundboard for a grand concetrt harp. Thesis, University of Illinois, Chicago, Master of Sci

    Google Scholar 

  • Samir ASA, Alloin F, Dufresne (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Schelleng JC (1963) The violin as a circuit. J Acoust Soc Am 35:325–338

    Google Scholar 

  • Schwichtenberg G (1982) Piano soundboard. J Acoust Soc Am 72(6):2057–2057

    Google Scholar 

  • Shi J, Zhang JS, Pittman CL Jr, Toghiani H, Xue Y (2008) Preliminary study of the stiffness enhancement of wood-plastic composites using carbon nanofibres. Holz Roh Werkst 66:313–322

    Article  Google Scholar 

  • Shimazu I, Miura M, Kuno H, et al. (2006) Synthesis of novel high damping ceramic polymer composites and its application as ceramic musical instruments. In: Proceedings of 2nd international symposium on high damping materials. Kyoto, Key Eng Mat, vol 319:173–180 9–10 Sept

    Google Scholar 

  • Ventra MD, Evoy S, Heflin JR Jr (2004) Introduction to nanoscale science and technology. Kluwer Academic Publ, Norwell, Massachusetts, US

    Book  Google Scholar 

  • Yeh MK, Lin CM (2009) Bending strength of sandwich beams with nanocomposites core. Advanced Mat Res. 78(92):577–580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voichita Bucur .

Patents

Patents

List of selected Patents—composites for musical instruments

Author

Year

Title

Allred JB

2007

Carbon fiber laminate soundboard for hollow-bodied stringed instrument e.g. guitar, piano has predetermined layers of carbon fiber materials, perforated core and additional shaped layers of constant thickness material e.g. plywood. Patent US 2007 163418-A1

Berthaut J

1969

Laminated soundboards for a string instrument. US Patent

P. A. Bert.

1969

Laminated soundboard for a string instrument. United States Patents No. 3,477,330. Washington, DC:

Bihuber PH

1936

Soundboard for pianos and other instruments or devices using soundboards. US Patent

Conklin HA

1975

Soundboard construction for stringed musical instruments. US Patent

Cook RL

1997

Composite string instrument apparatus and method. Patent US5,955,688

Donohoe D G

1994

Plastic-clad wooden drumstick and method of making. Patent. US 5341718

Hamilton TM

2007

Layered composite pick guard for stringed musical instruments. Patent. US7482523

Hasegawa T

2006

Acoustic material for musical instruments Patent Jp 2006116807-A

Kaman J, Mayerjak CH

1982

Soundboard assembly for pianos or the like. Patent US 6,610,915 B2

Lin Z

2008

Bamboo/wood carbon slabs processing method Patent CN 101053968-A

Schleske M

2004

Soundboard of composite fiber material construction US Patent US 6,610,915B

Schwichtenberg G

1982

Piano soundboard. US Patent

Schaller HF

1975

Injection molded stick for stringed musical instrument bow. Patent, US4015501

Teel, T A

2003

Acoustic guitar having a composite soundboard. U.S. Patent No. 6,664,452.

Vochezer G

2007

Tuning peg element for stringed musical instrument, has fixing part manufactured from non-fibrous material in contact area, by which fixing part comes into contact with peg box. Patent US 2009 025528-A

Westheimer JL

1999

Stringed musical instrument body and neck composition and method of making body and neck. Patent US 5,905,219

Matsumoto T, Yamada T

1973

Soundboards for string instrument having plastic foam body with harder outer layer. US Patent U.S. Patent No. 3,724,312.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bucur, V. (2016). Composite Materials for Musical Instruments. In: Handbook of Materials for String Musical Instruments. Springer, Cham. https://doi.org/10.1007/978-3-319-32080-9_18

Download citation

Publish with us

Policies and ethics