Skip to main content
  • 2367 Accesses

Abstract

The structural elements of the modern bow used for the stringed instruments from the violin family are the bow stick, the hair, the frog, the button or the screw and the pad. The parameters which define the bow are the length, the weight, the balance, the playability and the potential for giving power to the sound and the aesthetics. The stick of the bow is made in pernambuco. The frog uses ebony, mother of pearl, ivory, silver and gold. Several alternative wood species or carbon fiber composites have been proposed, but the fine bows in pernambuco are preferred by the musicians. Physically the bow is a relatively simple device but requires a great skill in making it. The modes of vibration of the bow stick are bending, torsional and longitudinal. These modes are coupled to the stretched bow hair. The vibration of the head of the stick can couple to the modes of vibration of the hair, and furthermore, the hair string contact can either transfer energy to the radiating modes of the violin body or/and influence the generation of Helmholtz kinks in the string. Simulation of dynamic bow behaviour was performed with finite element computation. The vibration modes of the bow can influence the sound of the violin. Rosin, a natural product collected from longleaf pine combined with several other ingredients and applied to the bow hair, plays an important role in violin playing, and in other instruments of this family, by facilitating a clean attack of the played note.

Each good bow is a sculpture in movement, a concept of embedded music.

Benoît Rolland-Maître Archetier d’Art, 1993

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ablitzer F, Dalmont JP, Dauchez N (2012) Static model of a violin bow: influence of camber and hair tension on mechanical behaviour. J Acoust Soc Am 131, 1, Pt 2:773–782

    Google Scholar 

  • Alves ES, Longui EL, Amano E (2008) Pernambuco wood (Caesalpina echinata) used in the manufacture of bows for strings instruments. IAWA J 29(3):323–335

    Article  Google Scholar 

  • Angyalossy V, Amano E, Segala Alves E (2005) Madeiras utilizadas na fabricaçao de arcos para instrumentos de corda; aspectos anatômicos. Acta Bot Bras 19(4):819–834

    Article  Google Scholar 

  • Askenfelt A (1986) Measurement of bow motion and bow force in violin playing. J Acoust Soc Am 80:1007–1015

    Article  Google Scholar 

  • Askenfelt A (1989) Measurement of the bowing parameters in violin playing. 11: Bow-bridge distance, dynamic range, and limits of bow force. J Acoust Soc Am 86:503–516

    Article  Google Scholar 

  • Askenfelt A (1992) Observations on the dynamic properties of violin bows. STL-QPSR 4:43–49

    Google Scholar 

  • Askenfelt A (1993) A look at violin bows. STL-QPSR 34, 2-3: 41–48

    Google Scholar 

  • Askenfelt A (1994) A look at violin bows. In: Proceedings of SMAC 93. Stockholm Music Acoustics Conference, July 28–August 1, 1993, Royal Swedish Academy of Music, Stockholm, pp 341–345

    Google Scholar 

  • Askenfelt A (1995a) Observations on the violin bow and the interaction with the string. STL-QPSR 36(2–3):107–118

    Google Scholar 

  • Askenfelt A (1995b) Observations on the violin bow and the interaction with the string. In: Proceedings international symposium musical acoustics, Dourdan, France-ISMA 95:198–212 and also STLQPSR 36, 2–3:23–42

    Google Scholar 

  • Askenfelt A, Guettler K (1997) The bouncing bow: some important parameters. Department for Speech, Music and Hearing. Quarterly Progress and Status Report TMH-QPSR 38, 2–3:053–057

    Google Scholar 

  • Askenfelt A, Guettler K (1998). The bouncing bow: An experimental study. Catgut Acoust. Soc. J 3(6): 3–8

    Google Scholar 

  • Jeronimidis G. Atkins AG (1995) Mechanics of biological materials and structures: nature’s lessons for the engineer. In: Proc Inst Mech Eng Part C: J Mech Eng Sci 209:221–235

    Google Scholar 

  • Barducci I, Pasqualini G (1948) Measurement of the internal friction and the elastic constants of wood. In: Carleen H (ed) Benchmark papers in acoustics, vol 5. Musical Acoustics, Part I. Dowden, Hutchinson & Ross, Inc. Stroudsburg, 1975. Translation of the original article in Italian «Misura dell’attrito interno e delle constanti elastiche del legno», I1 Nuovo Cimento 515:416–466

    Google Scholar 

  • Bartholomew J, Glasser A (2007) Braided composite stringed instrument bow U.S. Patent No. 7,262,353. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  • Bissinger G (1993) Merging microphone and accelerometer hammer-impact modal analysis measurements: working example- violin bow. In: Proceedings 11th international modal analysis conference society for experimental mechanics. Bethel, CT, pp 850–854

    Google Scholar 

  • Bissinger G (1995) Bounce test, modal analysis and the playing qualities of the violin bow. Catgut Acoust Soc J 2(8):17–22

    Google Scholar 

  • Bissinger G, Ye K (1999) Effect of holding on the normal modes of an instrumented violin bow. In: Proceedings 17th international modal analysis conference society for experimental mechanics, Bethel, CT, pp 126–130

    Google Scholar 

  • Brancheriau L, Kouchade C, Brémaud I (2010) Internal friction measurement of tropical species by various acoustic methods. J Wood Sci 56:371–379

    Article  Google Scholar 

  • Brémaud I (2006) Diversité des bois utilises ou utilisables en facture d’instruments de musique. Ph.D dissertation. Université Montpellier II. France

    Google Scholar 

  • Brémaud I, Minato K, Langbour P, Thibaut B (2010) Physico-chemical indicators of inter-specific variability in vibration damping of wood. Ann For Sci 67:107–114

    Article  Google Scholar 

  • Brémaud I, Amusant N, Minato K, Gril J, Thibaut B (2011) Effect of extractives on vibrational properties of African Padauk (Pterocarpus soyauxii Taub). Wood Sci Techn 45:461–472

    Article  Google Scholar 

  • Bucur V (1988) Wood structural anisotropy estimated by acoustic invariants. IAWA Bull 9(1):67–74

    Article  Google Scholar 

  • Bucur V (2006) Acoustics of wood. Chapter 6: wood structural anisotropy and ultrasonic parameters. Springer Verlag, Berlin Heidelberg, pp 141–169

    Google Scholar 

  • Campbell M, Greated C, Myers A (2004) Musical instruments. History, technology and performance of instruments of Western music. Oxford University Press, New York

    Google Scholar 

  • Carlsson P, Tinnsten M (2007) Geometrical compensation for varying material properties in bows by the use of numerical optimization. Acustica, Acta Acustica 93(1):145–151

    Google Scholar 

  • Caussé R, Maigret JP, Dichtel C, Bensoam J (2001) Study of violin bow quality. Intern Symp Musical Acoust (ISMA 2001), Perugia, 10–14 Sept, 6p

    Google Scholar 

  • Ciattini S, Di Giulio G, Loglio F, Lucchi G, Signorini G (2012) Anatomical investigation of pernambuco wood sticks used to manufacture bows for strings instruments. http://www.skyscan.be/company/UM2012/21.pdf

  • Cremer L (1994) The physics of the violin. MIT Press, Cambridge

    Google Scholar 

  • Dauchez N, Génevaux JM, Brémaud I (2006) Qualité des archets de violons et instabilité de type flambent. Actes du 8ème Congrès Français d’ Acoustique. Tours, France

    Google Scholar 

  • de Oliveira LFC, Edwards HG, Velozo ES, Nesbitt M (2002) Vibrational spectroscopic study of brazilin and brazilein, the main constituents of brazilwood from Brazil. Vibr Spectroscopy 28(2):243–249

    Article  Google Scholar 

  • Edwards HG, de Oliveira LFC, Nesbitt M (2003) Fourier-Transform Raman characterization of brazilwood trees and substitutes. The Analyst 128:82–87

    Article  Google Scholar 

  • Fétis F (1856) Théoriques sur l’archet. In: Antoine Stradivari (ed) luthier célèbre des instruments á archet. Vuillame, Paris. (translated in English as: A theoretical analysis of the bow. In: Bishop J (ed) Antony Stradivary: the celebrated violin maker. Robert Cook, London 1964. http://books.google.co.uk. Accessed 1 July 2013

  • Fletcher NH, Rossing T (2010) Physics of musical instruments. Springer, Berlin

    Google Scholar 

  • Fryxell R (1974) The structure of bow hair. Am String Teacher, Spring issue

    Google Scholar 

  • Gough CE (2011) The violin bow: taper, camber and flexibility. J Acoust Soc Am 130(6):4105–4116

    Article  Google Scholar 

  • Gough CE (2012) Violin bow vibrations. J Acoust Soc Am 131(5):4152–4163

    Article  Google Scholar 

  • Guettler K (1999) Some physical properties of the modern violin bow. http://knutsacoustics.com/files/Some-bow-properties-CISM.pdf

  • Guettler K (2010) Bows, strings, and bowing. In: Rossing TD (ed) The science of string instruments. Springer, Chap 16, pp 279–299

    Google Scholar 

  • Guettler K (2011) How does rosin affect sound? String Res J II:37–47

    Google Scholar 

  • Guettler K, Askenfelt A (1995) Relation between bow resonances and the spectrum of the bowed string. In: Proceedings ISMA‘95 (International Symposium Musical Acoustics) July 2–6, 1995, Dourdan, France)

    Google Scholar 

  • Guettler K, Askenfelt A (1998) On the kinematics of spiccato and ricochet bowing. Catgut Acoust Soc J Series II 3(6):9–15

    Google Scholar 

  • Haines D (1979) On musical instrument wood. Catgut Acoust Soc Newslett 31:23–32

    Google Scholar 

  • Heckel C (2009) Physical characteristics of mammoth Ivory and their implications for ivory work in the Upper Palaeolithic. Mitteilungen der Gesellschaft für Urgeschichte 18:71–91

    Google Scholar 

  • Hunter RS (1948) Photoelectric colour difference meter. J Opt Soc Am 38(7):661

    Google Scholar 

  • Jakubinek MB, Samarasekera CJ, White MA (2006) Elephant ivory, a low thermal conductivity, high strength nanocomposite. J Mat Res 21(1):287–292

    Article  Google Scholar 

  • Jolly VJ (1974) More about the structure of bow hair. Catgut Acoust Soc Newslett 22:20

    Google Scholar 

  • Longui EL, Lombardi DR, Alves ES (2010) Potential Brazilian wood species for bows of string instruments. Holzforschung 64:511–520

    Article  Google Scholar 

  • Matsunaga M, Sugiyama M, Minato K, Norimoto M (1996) Physical and mechanical properties required for violin bow materials. Holzforschung 50(6):511–517

    Article  Google Scholar 

  • Matsunaga M, Minato K, Nakatsubo F (1999) Vibrational property changes of spruce wood by impregnation with water soluble extractives of pernambuco (Guilandia echinata Spreng). J Wood Sci 45, 6:479–474

    Google Scholar 

  • Matsunaga M, Sakai K, Kamitakahara H, Minato K, Nakatsubo F (2000) Vibrational property changes of spruce wood by impregnation with water-soluble extractives of Pernambuco (Guilandina echinata Spreng.) Part II: structural analysis of extractive components. J Wood Sci 46:253–257

    Article  Google Scholar 

  • Matsutani A (2002) Study of rosin particles on bow hair in violin performance. Jpn J Appl Phys 41:1618–1619

    Article  Google Scholar 

  • Mayer A, Pöcherstorfer H, Widholm G (2007) Analysis of bow hair fibres. In: Proceedings of international symposium musical acoustics (ISMA 2007). Barcelona, Spain, 8p

    Google Scholar 

  • McIntyre ME, Woodhouse J (1979) On the fundamentals of bowed-string dynamics. Acustica 43:93–108

    Google Scholar 

  • McIntyre ME, Schumacher RT, Woodhouse J (1981a) Aperiodicity in bowed-string motion. Acustica 49:13–32

    Google Scholar 

  • McIntyre ME, Schumacher RT, Woodhouse J (1981b) Aperiodicity in bowed-string motion: on the differential slipping mechanism. Acustica 50:294–295

    Google Scholar 

  • McIntyre ME, Schumacher RT, Woodhouse J (1983) On the oscillations of musical instruments. J Acoust Soc Am 74:1325–1345

    Google Scholar 

  • Menzel R, Marcus R (1979) The microtexture of horse hair. Catgut Acoust Soc Newslett 32:14–20

    Google Scholar 

  • Minato K, Konaka Y, Bremaud I, Suzuki S, Obataya E (2010) Extractives of muirapiranga (Brosimun sp.) and its effects on the vibrational properties of wood. J. Wood Science 56(1):  41–46

    Google Scholar 

  • Pickering N (1984) A study of bow hair and rosin. J Violin Soc Am 7(1):46–72

    Google Scholar 

  • Pickering N (1987) Physical properties of violin bows. J Violin Soc Am 8(2):41–50

    Google Scholar 

  • Pickering N (1991a) The bowed string. Amereon, Mattituck, New York

    Google Scholar 

  • Pickering N (1991b) A new light on bow action. J Violin Soc. Am 1(111):83–92

    Google Scholar 

  • Pitteroff R (1995) Contact mechanics of the bowed string. University of Cambridge, Ph.D. diss

    Google Scholar 

  • Pitteroff R, Woodhouse J (1998) Mechanics of the contact area between a violin bow and a string. Acustica—Acta Acustica. Part I: Reflection and transmission behaviour. 84:543–562, Part II Simulating the bowed string 84:744–757. Part III Parameter dependence 84:929–938

    Google Scholar 

  • Rajaram A (1986) Tensile properties and fracture of ivory. J Mat Sci Lett 5:1077–1080

    Article  Google Scholar 

  • Ravina E, Silvestri P, Airenti A (2008) Experimental modal analysis of bows. Proc Acoustics ’08, Paris, pp 4835–4840

    Google Scholar 

  • Richter HG, Dallwitz MJ (2000) Onwards. Commercial timbers: descriptions, illustrations, identification, and information retrieval. In: English, French, German, Portuguese, and Spanish. Version: 25th June 2009. http://delta-intkey.com

  • Rocaboy F (1990). The structure of bow hair fibres. Catgut Acoust Soc J (Series II) 1, 6:34–36

    Google Scholar 

  • Roda J (1959) Bows for musical instruments of the violin family. William Lewis & Son, Chicago, Illinois

    Google Scholar 

  • Rolland B (1992) Bow for a string instrument. U. S Patent 5(323):675

    Google Scholar 

  • Rolland B (2004) The playing parts of the bow focussing on the stick. J Violin Soc Am 19, 1:201–217

    Google Scholar 

  • Rolland B (2012) Stringed-instrument bow maker Benoît Rolland was named a MacArthur Fellow.  https://www.youtube.com/watch?v=UwSsez33ykc  Conversation about bow

  • Roth K (2012) Chemical secrets of violin virtuosi. Part 3 Chemie in unserer Zeit, 10p. http://www.chemistryviews.org/details/ezine/2085627/Chemical_Secrets_of_the_Violin_Virtuosi__Part_3.html

  • Rymer R (2004) Saving the music tree. Smithsonian 35(1):52–63

    Google Scholar 

  • Saint George (1922) The bow, its history, manufacture and use. JH Lavender and Co, London. http://www.antique-ebooks.com/skidoooomnbvcxz/The_Bow.pdf

  • Schaller HFK (1977) Injection molded stick for stringed musical instrument bow. US Patent 4,015,501

    Google Scholar 

  • Schelleng JC (1973) The bowed string and the player. J Acoust Soc Am 53(1):26–41

    Article  Google Scholar 

  • Schimleck LR, Espey C, Mora CR, Evans R, Taylor A, Muniz G (2009) Characterization of the wood quality of pernambuco (Caesalpinia echinata Lam) by measurements of density, extractives content, microfibril angle, stiffness, color and NIR spectroscopy. Holzforschung 63(4):457–463

    Article  Google Scholar 

  • Schoonderwaldt E, Guettler K, Askenfelt A (2003) Effect of width of the bow hair on the violin string spectrum. In: Proceedings SMAC 03 Stockholm, Sweden

    Google Scholar 

  • Schumacher R (1975) Some aspects of the bow. Catgut Acoust Soc Newslet 24:5–8

    Google Scholar 

  • Schumacher RT (1979) Self-sustained oscillations of the bowed string. Acoustica 43:109–120

    Google Scholar 

  • Schumacher RT (1991) The influence of the bow on the aperiodicity of violin notes. J Acoust Soc America 8912:1926

    Article  Google Scholar 

  • Schumacher RT (1992) Analysis of a periodicities in nearly periodic waveforms. J Acoust Soc Am 91:438–451

    Article  Google Scholar 

  • Smith JH, Woodhouse J (2000) The tribology of rosin. J Mech Phys Solids 48:1633–1681

    Article  Google Scholar 

  • Su XW, Cui FZ (1999) Hierarchical structure of ivory: from nanometer to centimeter. Mater Sci Eng C 7:19

    Article  Google Scholar 

  • Sugiyama M, Matsunaga M, Minato K, Norimoto M (1994) Physical and mechanical properties of pernambuco (Guilandia echinata Spreng) used for violin bows. Mokuzai Gakk 40:905–910

    Google Scholar 

  • Varty N (1998) Caesalpinia echinata. IUCN Red List of Threatened Species. Version 2010.3. International Union for Conservation of Nature. Retrieved 2010-10-06

    Google Scholar 

  • Vatelot E (1978) The art of French bow. J Violin Soc Am 4(3):238–253

    Google Scholar 

  • Wegst UGK (2006) Wood for sound. Am J Botany 93(10):1439–1448

    Article  Google Scholar 

  • Wegst UGK, Oberhoff S, Weller M (2006) Materials for violin bow. What are the alternatives for pernambuco? (poster) http://www.boku.ac.at/physik/coste35/downloads/vilareal/Wegst_et_al.pdf

  • Wegst UGK, Oberhoff S, Weller M, Ashby MF (2007) Materials for violin bow. Intern J Materials Res 98(12):1230–1237

    Article  Google Scholar 

  • Woodhouse J (1992a) Physical modeling of bowed strings. Comput Music J 16(4):43–56

    Article  Google Scholar 

  • Woodhouse J (1992b) On the playability of violins. Part I. Reflection functions. Acustica 78:125–136 Part 2 Minimum bow force and transients. Acustica 78:137–153

    Google Scholar 

  • Woodhouse J (2003) Bowed string simulation using a thermal friction model. Acustica Acta Acustica 89:355–368

    Google Scholar 

  • Woodhouse J, Galluzzo PM (2004) Why is the violin so hard to play? O + Plus Magazine September: 8p. http://plus.maths.org/issue31/features/woodhouse/index.htm. Accessed 15 Jan 2012

  • Woodhouse J, Schumacher RT, Garoff S (2000) Reconstruction of bowing point friction force in a bowed string. J Acoust Soc Am 108, 1:357–368

    Google Scholar 

  • Yamamoto T, Sugiyama S (2010) Structural changes in cuticles on violin bow hair caused by wear. Biosci Biotechnol Biochem 74(2):408–410

    Article  Google Scholar 

  • Yano H (1994) The changes in acoustical properties of Western Red Cedar due to methanol extraction. Holzforschung 48:491–495

    Article  Google Scholar 

  • Yano H, Kyou K, Furuta Y, Kajita H (1995) Acoustic properties of Brazilian rosewood used for guitar back plate. Mokuzai Gakk 41:17–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voichita Bucur .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bucur, V. (2016). The Bow. In: Handbook of Materials for String Musical Instruments. Springer, Cham. https://doi.org/10.1007/978-3-319-32080-9_13

Download citation

Publish with us

Policies and ethics