Skip to main content

Strings for Musical Instruments of the Baroque and Romantic Periods

  • Chapter
  • First Online:
Handbook of Materials for String Musical Instruments
  • 2439 Accesses

Abstract

Strings of musical instruments can be excited by plucking, bowing or striking and can vibrate in several modes. The main parameters which characterize the strings are the diameter, the length, the mass per unit length, the stiffness, the normal playing tension and the inharmonicity of the overtones. Inharmonocity is favoured by short, thick and high stiffness strings. Strings are made in organic materials (gut and silk) or in metal. Strings in gut and silk are used for lutes and guitars, for the instruments from the violin family and harps. Gut strings are made from animal intestines. Silk strings are produced from mulberry silkworm protein fibres. Strings produced with natural materials are very flexible and have remarkable mechanical properties, but are very sensitive to the variations of temperature and relative humidity of the air which affect their pitch. For increasing stability of lower pitch strings it is common to introduce an extra mass, which is a metallic layer used to overwind the strings having a gut, silk or metallic core. Different alloys – brass, copper, iron, steel, silver and gold have been used for metallic strings of keyboard instruments. Harps have gut and metallic strings. Piano strings are exclusively in steel, the lower strings are overlapped with copper or brass to add mass and to reduce the high stiffness of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott D, Segerman E (1974) Strings in the 16th and 17th century. The Galpin Soc J XXVII:68–73

    Google Scholar 

  • Ancker CJ, Goodier JN (1958a) Pitch and curvature corrections for helical springs. Trans ASME-J Appl Mech 25:466–470

    Google Scholar 

  • Ancker CJ, Goodier JN (1958b) Theory of pitch and curvature corrections for thehelical springs-I (tension). Trans ASME-J Appl Mech 25:471–483

    Google Scholar 

  • Ancker CJ, Goodier JN (1958c) Theory of pitch and curvature corrections for thehelical springs-II (torsion). Trans ASME-J Appl Mech 25:484–495

    Google Scholar 

  • Barbieri P (2006) Roman and Neapolitan gut strings 1550–1950. The Galpin Soc J 59:147–181

    Google Scholar 

  • Barbieri P (1985) Giordano Riccati on the diameters of strings and pipes. The Galpin Soc J 37:20–34

    Article  Google Scholar 

  • Bavu E, Smith J, Wolfe J (2005) Torsional waves in a bowed string. Acta Acustica United Acustica 91:241–246

    Google Scholar 

  • Bell AJ, Firth I (1986) The physical properties of gut musical instruments strings. Acustica 60:87–89

    Google Scholar 

  • Betten J (2005) Creep mechanics, 2nd edn. Springer, Berlin

    Google Scholar 

  • Birkett S, Poletti P (nd) Reproduction of authentic historical soft iron wire for musical instruments. http://www.fortepianos.com/iron%20wire.pdf. Accessed 27 Jan 2013

  • Biringuccio V (1540) De la Pirotecnia. Transl. Smith CS, Gnudi MT, American Inst. Mining and Metallurgical Engineers 1942

    Google Scholar 

  • Borer P (2004) Le corde di Paganini. Some reflections on Paganini’s violin strings. In “Atti del Convegno Internazionals di Luteria “Recupero e conservazione del violino Guarneri de Gesu (1743 detto:Canone”, Genova, October 14:85–98. http://www.paganini.comune.genova.it/pdf_doc/congresso2004.pdf

  • Carey Beebe (n.d) Harpsichords. Sydney, Australia. http://www.hpschd.nu/

  • Chaigne A, Kergomard J (2008) Acoustique des instruments de, musique edn. Belin, Paris

    Google Scholar 

  • Chaigne A (2007) Structural acoustics and vibrations. In: Rossing TD Springer handbook of acoustics. Chapter 22:901–960

    Google Scholar 

  • Chen JM (2004) Cryogenic treatment of music wire. Thesis Dept Mechanical Eng., National Univ Singapore

    Google Scholar 

  • Chen JM, Seah KHW, Chew CH (2006) Mechanical characterization of cryogenically treated music. J. ASTM Intern 3(4):1–16

    Google Scholar 

  • Cohen A (1983) A cache of 18th century strings. The Galpin Soc J 36:37–49

    Article  Google Scholar 

  • Coulomb CA (1784) Recherches théoriques et expérimentales sur la force de torsion et sur l’élasticité des fils de métal. Mémoires de l’Academie Royale des Sciences, Paris, pp. 229–269

    Google Scholar 

  • Cremer L (1981) Physik der Geige. Stuttgart: Hirzel

    Google Scholar 

  • Cremer L (1984) The Physics of the violin. MIT Press, Harvard

    Google Scholar 

  • Dann E (1977) The second revolution in the history of the violin. Coll Music Symp 17(2):64–71

    Google Scholar 

  • De Pascale E (1996) Appendice documentaria, Evaristo Baschenis e la natura morta in Europa. Ed. by Francesco Rossi Milano Skira

    Google Scholar 

  • Diderot D, d’Alembert J (Ed) (1751–1758) Encyclopédie ou Dictionnaire raisonne des sciences des Arts et des Métiers, Paris. See the electronic version www.portail.atif.fr/encyclopédie/ and www.artflx.uchicago.edu/images/

  • Dumézil G (1982) Apollon sonore et autres essais. 25 Esquisses de Mythologie, Gallimard, Paris

    Google Scholar 

  • Ehrenberg R (2008) Silk. Science News, vol 174, Nov 22, p. 24

    Google Scholar 

  • Ellis K (2005) Interpreting the musical past. Early music in nineteenth century France. Oxford University Press Inc

    Google Scholar 

  • Firth I (1986) Overwrapped strings: design guide incorporating acoustical limitations. Catgut Acoust Soc Newsl 45:7–9

    Google Scholar 

  • Firth I (1987a) On the acoustics of the harp. Acustica 37:148–154

    Google Scholar 

  • Firth I (1987b) Construction and performance of quality commercial violin strings. Catgut Acoust Soc Newsl 47:17–20

    Google Scholar 

  • Firth I (1988) Harp strings of the 18th century. Catgut Acoust Soc J 1(2):19–23

    Google Scholar 

  • Firth I, Sykes C (1990) Harp strings of the 18th and 20th centuries. An acoustical comparison. The Galpin Soc J 43:46–59

    Article  Google Scholar 

  • Fletcher H (1964) Normal vibration of a stiff piano string. J Acoust Soc Am 36:203–209

    Article  Google Scholar 

  • Fletcher H, Blackham ED, Stratton R (1962) Quality of piano tones. J Acoust Soc Am 34:749–761

    Article  Google Scholar 

  • Fletcher NH (1976) Plucked strings—a review. Catgut Acoust Soc Newsl 26:13–17

    Google Scholar 

  • Fletcher NH (1978) Mode locking in nonlinearity excited inharmonic musical oscillators. J Acoust Soc Am 64:1566–1569

    Article  Google Scholar 

  • Fletcher NH (1999a) Materials for musical instruments. Acoust Aust 27(1):5–9

    Google Scholar 

  • Fletcher NH (1999b) The nonlinearity of musical instruments. Rep Prog Phys 62:723–764

    Article  Google Scholar 

  • Fletcher NH (2000) Inharmonicity, nonlinearity and music. Physicist 37(5):171–175

    Google Scholar 

  • Fletcher NH, Rossing TD (1998) The Physics of Musical Instruments. Springer Verlag, New York

    Google Scholar 

  • Fletcher NH, Rossing TD (2010) The physics of musical instruments, 2nd edn. Springer, New York

    Google Scholar 

  • Frisoli P (1971) The Museo Stradivarisano in Cremona. The Galpin Soc J xxiv:33–50

    Google Scholar 

  • Gabella G (1987) The cross—ply arrangement of collagen fibres in the submucosa of the mammalian small intestine. Cell Tissue Res 248:491–497

    Article  Google Scholar 

  • Galt D (2000) Iron, steel and pianos. Piano Technician J 43(11):17–25

    Google Scholar 

  • Getreau F (2006) Histoire des instruments et représentation de la musique en France. Thesis HDR—Université François Rabelais, Tour, France

    Google Scholar 

  • Giordano N (2011) Evolution of music wire and its impact on the development of the piano. J Acoust Soc Am 120, 4:2519–2519; Proc Meetings Acoust 12(1); Acoust Soc Am 2014, 10 pp

    Google Scholar 

  • Giordano N (2010) Some remarks on the acoustics of the piano. In: Rossing TD (ed) The science of string instruments. Springer, New York, pp 353–370

    Google Scholar 

  • Goodway M (1987) Musical wire Science. 235:927

    Google Scholar 

  • Goodway M (1992) Metals of music. Mater Charact 29:177–184

    Article  Google Scholar 

  • Goodway M, Odell JS (1984) The metallurgy of 17th and 18th century music wire. In: Schott H (ed) The historical harpsichord, vol 2. Pendragon Press. New York

    Google Scholar 

  • Goodway M, Odell JS (1987) The Historical Harpsichord, vol 2

    Google Scholar 

  • Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K (2002) Elastic proteins: biological roles and mechanical properties. Phil Trans Royal Soc B, Biological Sciences 357(1418):121–132

    Google Scholar 

  • Gough C (1981) The theory of string resonances in musical instruments. Acustica 49:124–141

    Google Scholar 

  • Gough C (1984) The nonlinear free vibration of a damped elastic string. J Acoust Soc Am 75:1770–1776

    Article  Google Scholar 

  • Gough C (2007) Musical acoustics. In: Rossing T (ed) Springer handbook of acoustics. Chapter 15:533–668

    Google Scholar 

  • Guettler K (2010) Bow, strings and bowing. In: Rossing T (ed) The science of string instruments. Springer, New York, Chapter 16:279—300

    Google Scholar 

  • Gug R (1983) The story of a harpsichord string, yesterday and today. FOMRH Q 31 Comm 452:26–41

    Google Scholar 

  • Gug R (1989) Uber Analysen alter Cembalosaiten Proc. Colloquium: Ruckers Klavecimbels London: In Early Keyboard Instruments. London: Norton; New York: Macmillan, pp 125–128

    Google Scholar 

  • Haas R (2009) Microstructure and properties of violin strings made of metastable austenitic steel. Intern J Mater Res 100(11):1557–1565

    Article  Google Scholar 

  • Haas R, Degischer HP, Pongratz P, Knoblich H (2004) Deformation martensite in violin strings made of stainless steel. Prakt Metallogr 41(7):354–365

    Google Scholar 

  • Haynes B (2002) A history of performing pitch. The story of “A”. The Scarecrow Press, Inc. Lanham, Maryland, Oxford

    Google Scholar 

  • Heron A (1914) Violin making as it was and is. London

    Google Scholar 

  • Houssay A (2004) La fabrication des cordes harmoniques entre 1790 et 1960: le rôle des artisans, des ingénieurs, des facteurs d’instruments et des musiciens, Centre d’Histoire des Technique du Conservatoire des Arts et Métiers, Paris DEA d’histoire des Techniques

    Google Scholar 

  • Houssay A (2008) Historique des cordes harmoniques: évolutions et innovations. Musique et Technique. Revue professionnelle de la Facture Instrumentale no 3:100–113

    Google Scholar 

  • Hubbard F (1965) Three centuries of Harpsichord Making. Harvard University Press, Cambridge, MA, US

    Google Scholar 

  • Hubbard F (1980) String. In Sadie S (ed) The new Grove dictionary of music and musicians 18:274–276

    Google Scholar 

  • Hubbard F(1984) Reconstructing the harpsichord’. In: Schott H (ed) The historical harpsichord, vol 1. New York

    Google Scholar 

  • Ko FK, Kawabata S, Inoue M et al (2010) Engineering of spider silk. www.Web.mit.edu/course/3/3.064/www/slids/ko_spider_silk.pdf

  • Kondo M, Kubota H, Sasakibara H (1986) Measurement of torsional motion of bowed strings with a helix pattern on its surface. Paper K3-1. In: Proceedings of the 12th international conference acoustics, ICA-Toronto

    Google Scholar 

  • Larson D (2003) Reproducing historical gut strings a modern approach. J Violin Soc Am 2:175–202

    Google Scholar 

  • Legge A, Fletcher NH (1984) Nonlinear generation of missing modes on a vibrating string. J Acoust Soc Am 76:5–12

    Article  Google Scholar 

  • Leipp E, Castellengo M (1977) Du diapason et de sa relativite. La Revue Musicale 294:5–41

    Google Scholar 

  • McLennan JE (2008) The violin musical acoustics from baroque to romantic. Ph.D. Thesis School of Physics, The University of New South Wales, Sydney, Australia

    Google Scholar 

  • Mendel A (1978) Pitch in Western Music. Acta Musicologica 50(1–2):1–93

    Article  Google Scholar 

  • Mersenne M (1636) Harmonie universelle: contenant la théorie et la pratique de la musique (Paris, 1636). Editions du Centre National de la Recherche Scientifique, 1975

    Google Scholar 

  • Mozart L (1756) Versuch einer grűndlichen Violinschule (A treatise on the fundamental principles of violin playing) Augsburg. 2nd edition, Kassel: Bärentreiter, 1995, English translation. Editha Knocker, Oxford University Press

    Google Scholar 

  • Műller G, Lauterborn W (1996) The bowed string as a nonlinear dynamical system. Acustica 82:657–664

    Google Scholar 

  • Newbury BD, Notis MR (2004) The history and evolution of wiredrawing techniques. JOM 56(2):33–37

    Article  Google Scholar 

  • Newell WE (1968) Miniaturization of tuning forks. Science 161:1320–1326

    Article  Google Scholar 

  • Olver AV, Wilson D, Crofton PSJ (2007) Investigation of service failures of steel music wire. Eng Fail Anal 14(7):1224–1232

    Article  Google Scholar 

  • Osaki S (2012) Spider silk violin strings with a unique packing structure generate a soft and profound timbre. Physical Review Letters, Vol. 108, April 13: 154301

    Google Scholar 

  • Peruffo M (2002) Nicollo Paganini and gut strings: the history of a happy find. http://www.aquilacorde.com/index. Accessed 2 April 2012

  • Peruffo M (nd) Equal tension, equal feel and scaled tension. http://www.aquilacorde.com/index. Accessed 16 Dec 2012

  • Peruffo M (1997) Italian violin strings in the 18th and 19th centuries: typologies, manufacturing techniqwues and principles of stringing. Recercare IX:155–203

    Google Scholar 

  • Peruffo M (1994) On Venice catlins, lyons, pistoy-basses and loaded weighted bass gut strings. FoMRHIQ—Fellowship of makers and researchers of historical instruments Quarterly—FoMRHI. Comm 1288 76:72–78

    Google Scholar 

  • Peruffo M (1993) The mystery of gut bass strings in the 16th and 17th centuries: the role of loaded weighted gut. Recercare V:115–151

    Google Scholar 

  • Pickering NC (2000) A holistic view of violin acoustics. J Violin Soc Am 17(1):29–53

    Google Scholar 

  • Pickering NC (1997a) A new type of string for bowed instruments. J Violin Soc Am 15(1):25–44

    Google Scholar 

  • Pickering NC (1997b) Strings and metallurgy. Catgut Acoust Soc J 3(4):24–29

    Google Scholar 

  • Pickering NC (1993) Problems in string making. Catgut Acoust Soc J 2(3):1–4

    Google Scholar 

  • Pickering NC (1991) The bowed string. Amereon LDT, New York

    Google Scholar 

  • Pickering NC (1990) String test. J Violin Soc Am 10(2):107–132

    Google Scholar 

  • Pickering NC (1989) Nonlinear behavior in overwound violin strings. J Catgut Acoust Soc 1(3); series II:46–50

    Google Scholar 

  • Pickering NC (1985) Physical properties of violin strings. Catgut Acoust Soc Newslett 44:6–8

    Google Scholar 

  • Pickering NC (1986) Elasticity of violin strings. J Catgut Acoust Soc Newslett, 46(2):3

    Google Scholar 

  • Pollens S (2009) Some misconceptions about the Baroque violin. Berkeley Electronic Press, 13 p. http://scholarship.claremont.edu/

  • Schliemann H (1880) Illos, the city and country of the Trojans. Harper, New York

    Google Scholar 

  • Segerman E (1988) Strings through the ages. pt 1. The Strad, vol 99, no 1173 pt 2 Highly strung The Strad, vol 99 no 1175, pt 3 Deep tension The Strad, vol 99 no 1176

    Google Scholar 

  • Segerman E, Abbott D (1976) Gut Strings. Early Music 4:30–38

    Google Scholar 

  • Shao Z, Vollrath F, Yang Y, Thogersen HC (2003) Structure and behaviour of regenerated spider silk. Macromolecules 36:1157–1161

    Article  Google Scholar 

  • Silver FH, Siperko LM (2003) Mechanosensing and mechanochemical transduction. Crit Rev Biomed Eng 31:255–331

    Article  Google Scholar 

  • Silver FH, Seehra GP, Freeman JW, DeVore D (2002) Viscoelastic properties of young and old human dermis: a proposed molecular mechanism for elastic energy storage in collagen and elastin. J Appl Polym Sci 86:1978–1985

    Article  Google Scholar 

  • Silver FH, Christiansen DL, Snowhill P, Chen Y (2001) Transition from viscous to elastic-based dependency of mechanical properties of self-assembled type I collagen fibers. J Appl Polym Sci 79:134–142

    Google Scholar 

  • Snelson RO (2000) A double safe engineered plate repair. Piano Technician J 17(11):38–40

    Google Scholar 

  • Spoto G, Grasso G (2011) Spatially resolved mass spectrometry in the study of art and archaeological objects. TrAC Trends in Analytical Chemistry, 30(6):856–863

    Google Scholar 

  • Spoto G, Torrisi A, Contino, A (2000) Probing archaeological and artistic solid materials by spatially resolved analytical techniques. Chemical Society Reviews 29(6):429

    Google Scholar 

  • Stopanni G (1999) Gut. Early Music Today 7(3):6–7

    Google Scholar 

  • Underwood JH, Burr W, Kapusta AA, Rickard CA (1992) Characterization of early and modern wire for an Italian harpsichord. J Test Eval 20(4):312–317

    Article  Google Scholar 

  • Valette C (1995) The mechanics of vibrating strings. In Hirschberg A, Kergomard J, Weinreich G (eds) Mechanics of musical instruments. Springer, Berlin, pp 115–183

    Google Scholar 

  • Wade-Matthews M, Thompson W (2010) The encyclopaedia of music, instruments of the orchestra and the great composers. Hermes House Anness Publication Ltd, London

    Google Scholar 

  • Wahl AM (1963) Mechanical springs. McGraw-Hill

    Google Scholar 

  • Webber O (2006) Rethinking gut strings: a guide for players of baroque instruments. King’s Music London

    Google Scholar 

  • Webber O (1999) Real gut strings: some new experiments in historical strings. The Consort 55:3–29

    Google Scholar 

  • Weinreich G (1977) Coupled piano strings. J Acoust Soc Am 62:1474–1484

    Article  Google Scholar 

  • Weinreich G et al (2011) String. Grove music online. Oxford Music Online. http://0-www.oxfordmusiconline.com.library.unl.edu/subscriber/article/music/45984

  • Wess TJ (2008) Collagen fibrils structure and hierarchies. Chapter 3; In: Fratzl P (ed) Collagen structure and mechanics. Springer, New York, pp 49–80

    Google Scholar 

  • Woodhouse J (2004) Entries for: acoustics, bowed instruments, bowing, strings, 2nd edn. In: Sadie S, Tyrrell J (eds) New grove dictionary of music and musicians

    Google Scholar 

  • Woodhouse J, Galluzzo PM (2004a) The bowed strings we know it today. Acta Acustica 90:579–589

    Google Scholar 

  • Woodhouse J, Galluzzo PM (2004b) Why is the violin so hard to play? Plus magazine. Sept 2004. http://plus.maths.org/issue31/features/woodhouse/feat.pdf

  • Woodhouse J, Loach AR (1999) Torsional behaviour of cello strings. Acustica 85:734–740

    Google Scholar 

  • Wraight D (1993) Two Harpsichords by Giovanni Celestini. Galpin Soc J 120–136

    Google Scholar 

  • Wraight RD (1997) The stringing of Italian keyboard instruments c. 1500-c. 1650. Part One: Discussion and bibliography. http://adsabs.harvard.edu

  • Young RW (1952) Inharmonicity of plain wire piano strings. J Acoust Soc Am 24:267–273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voichita Bucur .

Appendix: Iconographic Evidence Related to the Quality of Gut Strings of the 16th and 18th Centuries

Appendix: Iconographic Evidence Related to the Quality of Gut Strings of the 16th and 18th Centuries

Musical iconography is a branch of art history and in the same time a very useful tool for the musical organology and history of musical instruments (Getreau 2006).

The place of the musical instruments in still life paintings is discussed by De Pascale (1996). Musical instruments have been represented on portraits, on which the characters are playing different instruments. In Italian language such instruments are defined as “i strumenti che suona” (instruments which are played). In still life the musical instruments are the main subject of the painting and are static and silent (i strumenti che non suona), and presented with precise details of their construction. The famous Baroque painters of still life with musical instruments in Italy were Evaristo Baschensis (1617–1677), his pupil Bartolomeo Bettera (1639–1688), both actives in Bergamo and Cristoforo Munari (1667–1720) painter at Medici’s’ Court in Florence. Bergamo is in the proximity of Cremona famous region for the production of the best string instruments of that era. These paintings about musical instruments had beside the artistic value, a commercial one, by presenting and promoting the instruments produced locally. Dutch painters presented musical instruments as accessories for the characters painted, but less frequently as the main subject of the still life (17th century—Cornelis de Heem, Piete Claesz).

Through musical iconography Peruffo (1993) intended to demonstrate that the gut strings produced during 16th and 17th centuries were extremely flexible. He cited Baschensis’s paintings on which are represented curly strings on plucked or bowed instruments. (Figure 10.38). Such an example is shown in next figure (Fig. 10.39) on which the gut strings of the violin and cello are clearly depicted. Another naturalistic representation of musical instruments can be seen in Fig. 10.40

Fig. 10.38
figure 38

Baschensis—Still life with musical instruments (1650) now in Accademia Carrara in Bergamo (size 460 × 307 mm). Note the flexible strings clearly visible on all necks of the instruments (http://www.provincia.bz.it/cultura/temi/1731.asp. Access 15 October 2014)

Fig. 10.39
figure 39

Munari C—“Still life with musical instruments and fruits”—c. 1706. (Photo http://commons.wikimedia.org/wiki/File:Munari,_Cristoforo_-_Stilleben_mit_Musikinstrumenten_und_Fr%C3%BCchten_-_c._1706-03.jpg. Access 15 October 2014)

Fig. 10.40
figure 40

Cornelis de HEEM, (1631–1659) Vanitas, Still-Life with musical Instruments. (Oil on canvas, 153 × 166 cm) Rijksmuseum, Amsterdam http://www.wga.hu/html_m/h/heem/cornelis/vanitas.html. Access 20 October 2014

Diameters of different strings on baroque violin are visible in Fig. 10.41.

Fig. 10.41
figure 41

see the differences in strings diameter on the portrait of a Violin players by the Dutch painter Jan Lievens (1607–1674) (Photo http://www.paintingselect.com/images/Lievens/011liev_the-violin-player.jpg details reproduced by Peruffo p. 25 in “Equal tension, equal feel and scaled tension”, Peruffo (1993)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bucur, V. (2016). Strings for Musical Instruments of the Baroque and Romantic Periods. In: Handbook of Materials for String Musical Instruments. Springer, Cham. https://doi.org/10.1007/978-3-319-32080-9_10

Download citation

Publish with us

Policies and ethics