Skip to main content

Bayesian Uncertainty Quantification and Propagation (UQ+P): State-of-the-Art Tools for Linear and Nonlinear Structural Dynamics Models

  • Chapter
  • First Online:
Identification Methods for Structural Health Monitoring

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 567))

Abstract

A Bayesian framework for uncertainty quantification and propagation in complex structural dynamics simulations using vibration measurements is presented. The framework covers uncertainty quantification techniques for parameter estimation and model selection, as well as uncertainty propagation techniques for robust prediction of output quantities of interest in reliability and safety of the structural systems analyzed. Bayesian computational tools such as asymptotic approximation and sampling algorithms are presented. The Bayesian framework and the computational tools are implemented for linear and nonlinear finite element models in structural dynamics using either identified modal frequencies, measured response time histories, or frequency response spectra. High performance computing techniques that drastically reduce the excessive computational demands that arise from the large number of system simulations are outlined. Identified modal properties from a full-scale bridge demonstrate the use of the proposed framework for parameter estimation of linear FE models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelikopoulos, P., Papadimitriou, C., Koumoutsakos, P. (2012). Bayesian uncertainty quantification and propagation in molecular dynamics simulations: A high performance computing framework. Journal of Chemical Physics, 137(14).

    Google Scholar 

  • Angelikopoulos, P., Papadimitriou, C., & Koumoutsakos, P. (2015). X-TMCMC: Adaptive kriging for Bayesian inverse modeling. Computer Methods in Applied Mechanics and Engineering, 289, 409–428.

    Article  MathSciNet  Google Scholar 

  • Au, S. K. (2010). Assembling mode shapes by least squares. Mechanical Systems and Signal Processing, 25, 163–179.

    Article  Google Scholar 

  • Au, S. K. (2012). Fast Bayesian ambient modal identification in the frequency domain, part II: Posterior uncertainty. Mechanical Systems and Signal Processing, 26, 76–90.

    Google Scholar 

  • Au, S. K., & Beck, J. L. (2011). Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16, 263–277.

    Google Scholar 

  • Barbato, M., & Conte, J. P. (2005). Finite element response sensitivity analysis: A comparison between force-based and displacement-based frame element models. Computer Methods in Applied Mechanics and Engineering, 194(12–16), 1479–1512.

    Article  MATH  Google Scholar 

  • Barbato, M., Zona, A., & Conte, J. P. (2007). Finite element response sensitivity analysis using three-field mixed formulation: General theory and application to frame structures. International Journal for Numerical Methods in Engineering, 69(1), 114–161.

    Article  MATH  Google Scholar 

  • Beck, J. L. (2010). Bayesian system identification based on probability logic. Structural Control and Health Monitoring, 17(7), 825–847.

    Article  Google Scholar 

  • Beck, J. L., & Katafygiotis, L. S. (1998). Updating models and their uncertainties. I: Bayesian statistical framework. ASCE Journal of Engineering Mechanics, 124(4), 455–461.

    Article  Google Scholar 

  • Beck, J. L., & Taflanidis, A. (2013). Prior and posterior robust stochastic predictions for dynamical systems using probability logic. International Journal for Uncertainty Quantification, 3(4), 271–288.

    Article  MathSciNet  Google Scholar 

  • Beck, J. L., & Yuen, K. V. (2004). Model selection using response measurements: Bayesian probabilistic approach. ASCE Journal of Engineering Mechanics, 130(2), 192–203.

    Article  Google Scholar 

  • Cheung, S. H., & Beck, J. L. (2009). Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters. ASCE Journal of Engineering Mechanics, 135(4), 243–255.

    Article  Google Scholar 

  • Ching, J. Y., & Chen, Y. C. (2007). Transitional Markov chain Monte Carlo method for Bayesian model updating. Model Class Selection, and Model Averaging, 133(7), 816–832.

    Google Scholar 

  • Christodoulou, K. (2006). Development of damage detection and identification methodology. PhD Thesis, University of Thessaly.

    Google Scholar 

  • Christodoulou, K., & Papadimitriou, C. (2007). Structural identification based on optimally weighted modal residuals. Mechanical Systems and Signal Processing, 21(1), 4–23.

    Article  Google Scholar 

  • Fox, R. L., & Kapoor, M. P. (1968). Rate of change of eigenvalues and eigenvectors. AIAA Journal, 6(12), 2426–2429.

    Article  MATH  Google Scholar 

  • Giagopoulos, D., Salpistis, C., & Natsiavas, S. (2006). Effect of nonlinearities in the identification and fault detection of gear-pair systems. International Journal of Non-Linear Mechanics, 41, 213–230.

    Article  Google Scholar 

  • Giagopoulos, D., Papadioti, D.-C., Papadimitriou, C., & Natsiavas, S. (2013). Bayesian uncertainty quantification and propagation in nonlinear structural dynamics. In International Modal Analysis Conference (IMAC), Topics in Model Validation and Uncertainty Quantification (pp. 33–41).

    Google Scholar 

  • Goller, B., Pradlwarter, H. J., & Schueller, G. I. (2011). An interpolation scheme for the approximation of dynamical systems. Computer Methods in Applied Mechanics and Engineering, 200(1–4), 414–423.

    Article  MathSciNet  MATH  Google Scholar 

  • Goller, B., Beck, J. L., & Schueller, G. I. (2012). Evidence-based identification of weighting factors in Bayesian model updating using modal data. ASCE Journal of Engineering Mechanics, 138(5), 430–440.

    Article  Google Scholar 

  • Green, P. L. (2015). Bayesian system identification of a nonlinear dynamical system using a novel variant of simulated annealing. Mechanical Systems and Signal Processing, 52, 133–146.

    Article  Google Scholar 

  • Green, P. L., Cross, E. J., & Worden, K. (2015). Bayesian system identification of dynamical systems using highly informative training data. Mechanical Systems and Signal Processing, 56, 109–122.

    Article  Google Scholar 

  • Hadjidoukas, P. E., Angelikopoulos, P., Papadimitriou, C., & Koumoutsakos, P. (2015). 4U: A high performance computing framework for Bayesian uncertainty quantification of complex models. Journal of Computational Physics, 284(1), 1–21.

    Article  MathSciNet  Google Scholar 

  • Hansen, N., Muller, S. D., & Koumoutsakos, P. (2003). Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation, 11(1), 1–18.

    Article  Google Scholar 

  • Hastings, W. K. (1970). Monte-Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, H. A., Vergara, C., Papadimitriou, C., & Millas, E. (2013). The use of updated robust reliability measures in stochastic dynamical systems. Computer Methods in Applied Mechanics and Engineering, 267, 293–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, H. A., Millas, E., Kusanovic, D., & Papadimitriou, C. (2014). Model-reduction techniques for Bayesian finite element model updating using dynamic response data. Computer Methods in Applied Mechanics and Engineering, 279, 301–324.

    Article  MathSciNet  Google Scholar 

  • Jensen, H. A., Mayorga, F., & Papadimitriou, C. (2015). Reliability sensitivity analysis of stochastic finite element models. Computer Methods in Applied Mechanics and Engineering, 296, 327–351.

    Article  MathSciNet  Google Scholar 

  • Katafygiotis, L. S., & Beck, J. L. (1998). Updating models and their uncertainties. II: Model identifiability. ASCE Journal of Engineering Mechanics, 124(4), 463–467.

    Article  Google Scholar 

  • Katafygiotis, L. S., & Lam, H. F. (2002). Tangential-projection algorithm for manifold representation in unidentifiable model updating problems. Earthquake Engineering and Structural Dynamics, 31(4), 791–812.

    Article  Google Scholar 

  • Katafygiotis, L. S., Lam, H. F., & Papadimitriou, C. (2000). Treatment of unidentifiability in structural model updating. Advances in Structural Engineering—An International Journal, 3(1), 19–39.

    Article  Google Scholar 

  • Lophaven, S. N., Nielsen, H. B., & Sndergaard, J. (2002). DACE,A MATLAB Kriging Toolbox. DTU: DK-2800 Kgs.

    Google Scholar 

  • Lyness, J. N., & Moler, C. B. (1969). Generalized Romberg methods for integrals of derivatives. Numerische Mathematik, 14(1), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Metallidis, P., & Natsiavas, S. (2008). Parametric identification and health monitoring of complex ground vehicle models. Journal of Vibration and Control, 14(7), 1021–1036.

    Article  MATH  Google Scholar 

  • Metallidis, P., Verros, G., Natsiavas, S., & Papadimitriou, C. (2003). Fault detection and optimal sensor location in vehicle suspensions. Journal of Vibration and Control, 9(3–4), 337–359.

    Article  MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physic, 21(6), 1087–1092.

    Article  Google Scholar 

  • Muto, M., & Beck, J. L. (2008). Bayesian updating and model class selection for hysteretic structural models using stochastic simulation. Journal of Vibration and Control, 14(1–2), 7–34.

    Article  MATH  Google Scholar 

  • Nelson, R. B. (1976). Simplified calculation of eigenvector derivatives. AIAA Journal, 14(9), 1201–1205.

    Article  MathSciNet  MATH  Google Scholar 

  • Ntotsios, E., & Papadimitriou, C. (2008). Multi-objective optimization algorithms for finite element model updating. In Proceedings of International Conference on Noise and Vibration Engineering (ISMA) (pp. 1895–1909).

    Google Scholar 

  • Ntotsios, E., Papadimitriou, C., Panetsos, P., Karaiskos, G., Perros, K., & Perdikaris, P. C. (2009). Bridge health monitoring system based on vibration measurements. Bulletin of Earthquake Engineering, 7(2), 469–483.

    Article  Google Scholar 

  • Oden, J. T., Belytschko, T., Fish, J., Hughes, T. J. R., Johnson, C., Keyes, D., et al. (2006). Simulation-Based Engineering Science (SBES) Revolutionizing Engineering Science through Simulation. Report of the NSF: Blue Ribbon Panel on SBES.

    Google Scholar 

  • Papadimitriou, C., & Katafygiotis, L. S. (2001). A Bayesian methodology for structural integrity and reliability assessment. International Journal of Advanced Manufacturing Systems, 4(1), 93–100.

    Google Scholar 

  • Papadimitriou, C., & Lombaert, G. (2012). The effect of prediction error correlation on optimal sensor placement in structural dynamics. Mechanical Systems and Signal Processing, 28, 105–127.

    Article  Google Scholar 

  • Papadimitriou, C., & Papadioti, D. C. (2013). Component mode synthesis techniques for finite element model updating. Computers and Structures, 126, 15–28.

    Article  Google Scholar 

  • Papadimitriou, C., Beck, J. L., & Katafygiotis, L. S. (1997). Asymptotic expansions for reliability and moments of uncertain dynamic systems. ASCE Journal of Engineering Mechanics, 123(12), 1219–1229.

    Article  Google Scholar 

  • Papadimitriou, C., Beck, J. L., & Katafygiotis, L. S. (2001). Updating robust reliability using structural test data. Probabilistic Engineering Mechanics, 16(2), 103–113.

    Article  Google Scholar 

  • Papadimitriou, C., Ntotsios, E., Giagopoulos, D., & Natsiavas, S. (2011). Variability of updated finite element models and their predictions consistent with vibration measurements. Structural Control and Health Monitoring, 19(5), 630–654.

    Article  Google Scholar 

  • Papaioannou, I., Betz, W., Zwirglmaier, K., & Straub, D. (2015). MCMC algorithms for subset simulation. Probabilistic Engineering Mechanics, 41, 89–103.

    Article  Google Scholar 

  • Simoen, E., Moaveni, B., Conte, J. L., & Lombaert, G. (2013a). Uncertainty quantification in the assessment of progressive damage in a 7-story full-scale building slice. ASCE Journal of Engineering Mechanics, 139(12), 1818–1830.

    Article  Google Scholar 

  • Simoen, E., Papadimitriou, C., & Lombaert, G. (2013b). On prediction error correlation in Bayesian model updating. Journal of Sound and Vibration, 332(18), 4136–4152.

    Article  Google Scholar 

  • Tierney, L., & Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393), 82–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Vanik, M. W., Beck, J. L., & Au, S. K. (2000). Bayesian probabilistic approach to structural health monitoring. ASCE Journal of Engineering Mechanics, 126(7), 738–745.

    Article  Google Scholar 

  • Yan, W.-J., & Katafygiotis, L. S. (2015). A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups. Structural Safety, 52(Part B), 260–271.

    Google Scholar 

  • Yuen, K.-V. (2010). Bayesian methods for structural dynamics and civil engineering. Wiley.

    Google Scholar 

  • Yuen, K.-V., & Kuok, S.-C. (2015). Efficient Bayesian sensor placement algorithm for structural identification: A general approach for multi-type sensory systems. Earthquake Engineering and Structural Dynamics, 44(5), 757–774.

    Article  Google Scholar 

  • Yuen, K. V., Beck, J. L., & Katafygiotis, L. S. (2006). Efficient model updating and health monitoring methodology using incomplete modal data without mode matching. Structural Control and Health Monitoring, 13(1), 91–107.

    Article  Google Scholar 

Download references

Acknowledgments

The chapter summarizes research implemented under the ARISTEIA Action of the Operational Programme Education and Lifelong Learning and co-funded by the European Social Fund (ESF) and Greek National Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Papadimitriou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Papadimitriou, C. (2016). Bayesian Uncertainty Quantification and Propagation (UQ+P): State-of-the-Art Tools for Linear and Nonlinear Structural Dynamics Models. In: Chatzi, E., Papadimitriou, C. (eds) Identification Methods for Structural Health Monitoring. CISM International Centre for Mechanical Sciences, vol 567. Springer, Cham. https://doi.org/10.1007/978-3-319-32077-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32077-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32075-5

  • Online ISBN: 978-3-319-32077-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics