Skip to main content

Implementation of Parametric Methods for the Treatment of Uncertainties in Online Identification

  • Chapter
  • First Online:
Identification Methods for Structural Health Monitoring

Abstract

This chapter aims to provide an overview of the treatment of uncertainty in vibration-based monitoring and identification problems. This is delivered by means of an exemplary overview of methods that are structured in the time domain, and are of a parametric class, and which may or may not necessitate an assumption of an a priori system structure. In this respect, two main classes are herein demonstrated, namely (i) models formulated in the state-space domain, and (ii) models of the autoregressive type. The goal lies in tackling diverse sources of uncertainties including the identification of (i) linear system models from ambient sources, (ii) unmeasured system states under known excitation, (iii) potentially unknown a priori parameters, (iv) unmeasured input sources or (v) nonlinear response characteristics. A metamodeling approach able to account for the uncertainties in simulating nonlinear, dynamically evolving engineered systems is also touched upon herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar, S., Ahmad, A. R., Abdel-Rahman, E. M., & Naqvi, T. (2011). A pso accelerated immune particle filter for dynamic state estimation. 2011 Canadian Conference on Computer and Robot Vision (CRV) (pp. 72–79), May 2011. doi:10.1109/CRV.2011.17.

  • Andrieu, C., & Doucet, A. (2002). Particle filtering for partially observed gaussian state space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 827–836. ISSN 1467-9868. doi:10.1111/1467-9868.00363.

    Google Scholar 

  • Antonacci, E., De Stefano, A., Gattulli, V., Lepidi, M., & Matta, E. (2012). Comparative study of vibration-based parametric identification techniques for a three-dimensional frame structure. Structural Control and Health Monitoring, 19(5), 579–608. ISSN 1545-2263. doi:10.1002/stc.449.

    Google Scholar 

  • Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188. ISSN 1053-587X. doi:10.1109/78.978374.

    Google Scholar 

  • Bodeux, J. B., & Golinval, J. C. (2001). Application of armav models to the identification and damage detection of mechanical and civil engineering structures. Smart Materials and Structures, 10(3), 479.

    Article  Google Scholar 

  • Boston, C., Weber, F., & Guzzella, L. (2011). Optimal semi-active damping of cables with bending stiffness. Smart Materials and Structures, 20(5), 055005.

    Article  Google Scholar 

  • Brincker, R., & Andersen, P. (2006). Understanding stochastic subspace identification. In Conference Proceedings: IMAC-XXIV : A Conference & Exposition on Structural Dynamics. Society for Experimental Mechanics.

    Google Scholar 

  • Chatzi, E. N., & Smyth, A. W. (2009). The unscented kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Structural Control and Health Monitoring, 16(1), 99–123. ISSN 1545-2263. doi:10.1002/stc.290.

    Google Scholar 

  • Chatzi, E. N., & Smyth, A. W. (2013). Particle filter scheme with mutation for the estimation of time-invariant parameters in structural health monitoring applications. Structural Control and Health Monitoring, 20(7), 1081–1095. ISSN 1545-2263. doi:10.1002/stc.1520.

    Google Scholar 

  • Chatzi, E. N., & Smyth, A. W. (2014). Nonlinear system identification: Particle based methods. In: M. Beer, E. Patelli, I. Kougioumtzoglou, I. Au (Eds.), Encyclopedia of Earthquake Engineering: SpringerReference. (www.springerreference.com). Berlin, Heidelberg: Springer.

  • Chatzis, M. N., Chatzi, E. N., & Smyth, A. W. (2015). On the observability and identifiability of nonlinear structural and mechanical systems. Structural Control and Health Monitoring, 22(3), 574–593. ISSN 1545-2263. doi:10.1002/stc.1690.

    Google Scholar 

  • Chen, S., & Billings, S. A. (1989). Modelling and analysis of non-linear time series. International Journal of Control, 50(6), 2151–2171.

    Article  MathSciNet  MATH  Google Scholar 

  • Ching, J., Beck, J. L. (2007). Real-time reliability estimation for serviceability limit states in structures with uncertain dynamic excitation and incomplete output data. Probabilistic Engineering Mechanics, 22(1):50–62. ISSN 0266-8920. http://dx.doi.org/10.1016/j.probengmech.2006.05.006.

    Google Scholar 

  • De Angelis, M., Luş, H., Betti, R., & Longman, R. W. (2002). Extracting physical parameters of mechanical models from identified state-space representations. Journal of Applied Mechanics, 69(5), 617–625.

    Article  MATH  Google Scholar 

  • Dhler, M., Andersen, P., & Mevel, L. (2012). Operational modal analysis using a fast stochastic subspace identification method. In: R. Allemang, J. De Clerck, C. Niezrecki, J. R. Blough (Eds.), Topics in Modal Analysis I, Conference Proceedings of the Society for Experimental Mechanics Series (Vol. 5, pp. 19–24). New York: Springer. doi:10.1007/978-1-4614-2425-3_3.

    Google Scholar 

  • Eftekhar-Azam, S., Dertimanis, V., Chatzi, E., & Papadimitriou, C. (2015a). Output only schemes for input-state-parameter estimation of linear systems. Proceedings of UNCECOMP 2015, Crete Island, Greece, 25–27 May 2015.

    Google Scholar 

  • Eftekhar-Azam, S., Chatzi, E., & Papadimitriou, C. (2015b). A dual kalman filter approach for state estimation via output-only acceleration measurements. Mechanical Systems and Signal Processing, 60–61, 866–886. ISSN 0888-3270. http://dx.doi.org/10.1016/j.ymssp.2015.02.001.

  • Eftekhar-Azam, S., Chatzi, E., Papadimitriou, C., & Smyth, A. (2015c). Experimental validation of the kalman-type filters for online and real-time state and input estimation. Journal of Vibration and Control. doi:10.1177/1077546315617672.

    Google Scholar 

  • Gillijns, S., & De Moor, B. (2007a). Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough. Automatica, 43(5), 934–937. ISSN 0005-1098. http://dx.doi.org/10.1016/j.automatica.2006.11.016.

  • Gillijns, S., & De Moor, B. (2007b). Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica, 43(1), 111–116. ISSN 0005-1098. http://dx.doi.org/10.1016/j.automatica.2006.08.002.

  • Hsieh, C.-S. (2000). Robust two-stage kalman filters for systems with unknown inputs. IEEE Transactions on Automatic Control, 45(12), 2374–2378. ISSN 0018-9286. doi:10.1109/9.895577.

    Google Scholar 

  • Ismail, M., Ikhouane, F., & Rodellar, J. (2009). The hysteresis bouc-wen model, a survey. Archives of Computational Methods in Engineering, 16(2), 161–188.

    Article  MATH  Google Scholar 

  • Jin, G., Sain, M. K., & Spencer, B. F. (2005). Nonlinear blackbox modeling of mr-dampers for civil structural control. IEEE Transactions on Control Systems Technology, 13(3), 345–355. ISSN 1063-6536. doi:10.1109/TCST.2004.841645.

    Google Scholar 

  • Kim, J., & Lynch, J. P. (2012). Subspace system identification of support excited structures part ii: Gray-box interpretations and damage detection. Earthquake Engineering and Structural Dynamics, 41(15), 2253–2271.

    Google Scholar 

  • Koh, B.-H., Dharap, P., Nagarajaiah, S., & Phan, M. Q. (2005). Real-time structural damage monitoring by input error function. AIAA Journal, 43(8), 1808–1814. ISSN 0001-1452. doi:10.2514/1.14008.

    Google Scholar 

  • Kontoroupi, T., & Smyth, A. W. (2015). Online noise identification for joint state and parameter estimation of nonlinear systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, B4015006. doi:10.1061/AJRUA6.0000839.

    Google Scholar 

  • Kopsaftopoulos, F. P., & Fassois, S. D. (2012). A stochastic functional model based method for vibration based damage detection, localization, and magnitude estimation. Mechanical Systems and Signal Processing, in press, 1–1.

    Google Scholar 

  • Kwok, N. M., Fang, G., & Zhou, W. (2005). Evolutionary particle filter: re-sampling from the genetic algorithm perspective. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005) (pp. 2935–2940). doi:10.1109/IROS.2005.1545119.

  • Lin, J.-W., Betti, R., Smyth, A. W., & Longman, R. W. (2001). On-line identification of non-linear hysteretic structural systems using a variable trace approach. Earthquake Engineering & Structural Dynamics, 30(9), 1279–1303. ISSN 1096-9845. doi:10.1002/eqe.63.

    Google Scholar 

  • Ljung, L. (1999). System identification: Theory for the user (2nd ed.). Upper Saddle River, NJ, USA: Prentice Hall.

    MATH  Google Scholar 

  • Lourens, E., Papadimitriou, C., Gillijns, S., Reynders, E., De Roeck, G., & Lombaert, G. (2012). Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors. Mechanical Systems and Signal Processing, 29, 310–327. ISSN 0888-3270. http://dx.doi.org/10.1016/j.ymssp.2012.01.011.

  • Luş, H., De Angelis, M., Betti, R., & Longman, R. (2003). Constructing second-order models of mechanical systems from identified state space realizations. part ii: Numerical investigations. Journal of Engineering Mechanics, 129(5), 489–501. doi:10.1061/(ASCE)0733-9399(2003)129:5(489).

    Article  Google Scholar 

  • Mohammad, S. M., Eleni N. C., & Felix, W. (2015). Semi-active control for vibration mitigation of structural systems incorporating uncertainties. Smart Materials and Structures, 24(5), 055016.

    Google Scholar 

  • Naets, F., Croes, J., & Desmet, W. (2015). An online coupled state/input/parameter estimation approach for structural dynamics. Computer Methods in Applied Mechanics and Engineering, 283, 1167–1188. ISSN 0045-7825. http://dx.doi.org/10.1016/j.cma.2014.08.010.

  • Peeters, B. (2000). System identification and damage detection in civil engineering. PhD thesis, Department of Civil Engineering, KU Leuven

    Google Scholar 

  • Poulimenos, A. G., & Fassois, S. D. (2006). Parametric time-domain methods for non-stationary random vibration modelling and analysis - a critical survey and comparison. Mechanical Systems and Signal Processing, 20(4), 763–816.

    Article  Google Scholar 

  • Prevosto, M., Olagnon, M., Benveniste, A., Basseville, M., & Le Vey, G. (1991). State-space formulation, a solution to modal parameter estimation. Journal of Sound and Vibration, 148, 329342

    Google Scholar 

  • Rajamani, M. R., & Rawlings, J. B. (2009). Estimation of the disturbance structure from data using semidefinite programming and optimal weighting. Automatica, 45(1), 142–148. ISSN 0005-1098. http://dx.doi.org/10.1016/j.automatica.2008.05.032.

  • Reggio, A., De Angelis, M., & Betti, R. (2013). A state-space methodology to identify modal and physical parameters of non-viscously damped systems. Mechanical Systems and Signal Processing, 41(12), 380–395. ISSN 0888-3270. http://dx.doi.org/10.1016/j.ymssp.2013.07.002.

  • Saito, T., & Beck, J. L. (2010). Bayesian model selection for arx models and its application to structural health monitoring. Earthquake Engineering and Structural Dynamics, 39(15):1737–1759. ISSN 1096-9845. doi:10.1002/eqe.1006.

    Google Scholar 

  • Samara, P. A., Sakellariou, J. S., Fouskitakis, G. N., Hios, J. D., & Fassois, S. D. (2013). Aircraft virtual sensor design via a time-dependent functional pooling narx methodology. Aerospace Science and Technology, 29(1), 114–124.

    Article  Google Scholar 

  • Schuller, G. I. (2007). On the treatment of uncertainties in structural mechanics and analysis. Computers and Structures, 85(56):235–243, 2007. ISSN 0045-7949. http://dx.doi.org/10.1016/j.compstruc.2006.10.009. http://www.sciencedirect.com/science/article/pii/S0045794906003348. Computational Stochastic Mechanics.

  • Smyth, A., & Wu, M. (2007). Multi-rate kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring. Mechanical Systems and Signal Processing, 21(2), 706 – 723. ISSN 0888-3270. http://dx.doi.org/10.1016/j.ymssp.2006.03.005.

  • Smyth, A., Masri, S., Chassiakos, A., & Caughey, T. (1999). On-line parametric identification of mdof nonlinear hysteretic systems. Journal of Engineering Mechanics, 125(2), 133–142. doi:10.1061/(ASCE)0733-9399(1999)125:2(133).

    Article  Google Scholar 

  • Soize, C., & Ghanem, R. (2004). Physical systems with random uncertainties: Chaos representations with arbitrary probability measure. SIAM Journal on Scientific Computing, 26(2), 395–410.

    Article  MathSciNet  MATH  Google Scholar 

  • Spiridonakos, M. D., & Chatzi, E. N. (2015a). Metamodeling of dynamic nonlinear structural systems through polynomial chaos NARX models. Computers and Structures, 157, 99–113. ISSN 0045-7949. http://dx.doi.org/10.1016/j.compstruc.2015.05.002.

  • Spiridonakos, M. D., & Chatzi, E. (2015b). Metamodeling of structural systems with parametric uncertainty subject to stochastic dynamic excitation. Earthquakes and Structures/ An International Journal for Earthquake Engineering & Earthquake Effects on Structures, 8(4), 915–934.

    Google Scholar 

  • Spiridonakos, M. D., & Fassois, S. D. (2014). Adaptable functional series tarma models for non-stationary signal representation and their application to mechanical random vibration modeling. Signal Process, 96, 63–79. ISSN 0165-1684. doi:10.1016/j.sigpro.2013.05.012.

    Google Scholar 

  • Spiridonakos, M. D., Poulimenos, A. G., & Fassois, S. D. (2010). Output-Only Identification and Dynamic Analysis of Time-Varying Mechanical Structures Under Random Excitation: A comparative assessment of parametric methods. Journal of Sound and Vibration, 329(7), 768–785. doi:10.1016/j.jsv.2009.10.005.

    Article  Google Scholar 

  • Tajjudin, N., Ismail, N., Rahiman, M. H. F., & Taib, M. N. (2010). Model predictive control using arx model for steam distillation essential oil extraction system. 2010 International Conference on Intelligent and Advanced Systems (ICIAS) (pp. 1–5). doi:10.1109/ICIAS.2010.5716134.

  • Terrell, T., Gul, M., & Catbas, F. N. (2011). Civil Engineering Topics, Volume 4: Proceedings of the 29th IMAC, A Conference on Structural Dynamics, 2011, chapter Structural Health Monitoring of a Bridge Model Using ARX Models, pp. 357–364. New York, NY: Springer. doi:10.1007/978-1-4419-9316-8_34.

    Google Scholar 

  • Valencia, L. D. A., & Fassois, S. D. (2014). Stationary and non-stationary random vibration modelling and analysis for an operating wind turbine. Mechanical Systems and Signal Processing, 47(1–2), 263–285. ISSN 0888-3270. doi:10.1016/j.ymssp.2013.07.022.

    Google Scholar 

  • van Dijk, D., Lundbergh, S., & Tersvirta, T. (2003). Time-varying smooth transition autoregressive models. Journal of Business and Economic Statistics, 21(1), 104–121. ISSN 07350015.

    Google Scholar 

  • Van Overschee, P., & De Moor, B. (1996). Stochastic identification. Subspace Identification for Linear Systems (pp. 57–93). US: Springer.

    Google Scholar 

  • Wan, E. A., & Van Der Merwe, R. (2000). The unscented kalman filter for nonlinear estimation. Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, (pp. 153–158). doi:10.1109/ASSPCC.2000.882463.

  • Wei, H. L., & Billings, S. A. (2009). Improved parameter estimates for non-linear dynamical models using a bootstrap method. International Journal of Control, 82(11), 1991–2001.

    Article  MathSciNet  MATH  Google Scholar 

  • Yuen, K.-V., Hoi, K.-I., & Mok, K.-M. (2007). Selection of noise parameters for kalman filter. Earthquake Engineering and Engineering Vibration, 6(1), 49–56. ISSN 1671-3664. doi:10.1007/s11803-007-0659-9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eleni N. Chatzi , Minas D. Spiridonakos or Andrew W. Smyth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Chatzi, E.N., Spiridonakos, M.D., Smyth, A.W. (2016). Implementation of Parametric Methods for the Treatment of Uncertainties in Online Identification. In: Chatzi, E., Papadimitriou, C. (eds) Identification Methods for Structural Health Monitoring. CISM International Centre for Mechanical Sciences, vol 567. Springer, Cham. https://doi.org/10.1007/978-3-319-32077-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32077-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32075-5

  • Online ISBN: 978-3-319-32077-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics