Skip to main content

Imaging Techniques for the Detection and Diagnosis of Brain Damage in Hypertension

  • Chapter
  • First Online:
Hypertension and Brain Damage

Abstract

Hypertension is the major causal factor of neurovascular pathology including both vascular and parenchymal lesions. These lesions are the consequence of large vessel and small vessel ischaemic infarctions, macrohaemorrhages and microbleeds (MBs), as well as vascular and parenchymal brain alterations leading to cerebral tissue disintegration and secondary effects on brain metabolism and function. This chapter includes a description of the images of different brain lesions, silent and clinical, induced by hypertension. Also recent advances in functional neuroimaging for characterizing the effects of hypertension on the brain integrity are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gąsecki D, Kwarciany M, Nyka W et al (2013) Hypertension, brain damage and cognitive decline. Curr Hypertens Rep 15(6):547–558

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vu D, Lev MH (2005) Noncontrast CT in acute stroke. Semin Ultrasound CT MRI 26:380–386

    Article  Google Scholar 

  3. Gonzalez RG, Hirsch JA, Lev MH et al (2011) Acute ischemic stroke: imaging and intervention, 2nd edn. Springer, New York

    Book  Google Scholar 

  4. Merino JG, Warach S (2009) Imaging of acute stroke. Nat Rev Neurol 6:560–571

    Article  Google Scholar 

  5. Hacke W, Kaste M, Fieschi C et al (1998) Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Lancet 352:1245–1251

    Article  CAS  PubMed  Google Scholar 

  6. Muir KW, Buchan A, von Kummer R et al (2006) Imaging of acute stroke. Lancet Neurol 5:755–768

    Article  PubMed  Google Scholar 

  7. Kanekar SG, Zacharia T, Roller R (2012) Imaging of stroke: part 2, pathophysiology at the molecular and cellular levels and corresponding imaging changes. Am J Roentgenol 98(1):63–74

    Article  Google Scholar 

  8. Truwit CL, Barkowich AJ, Gean-Marton A et al (1990) Loss of the insular ribbon: another early CT sign of acute middle cerebral artery infarction. Radiology 176:801–806

    Article  CAS  PubMed  Google Scholar 

  9. Tomandl BF, Klotz E, Handschu R et al (2003) Comprehensive imaging of ischemic stroke with multisection CT. Radiographics 23:565–592

    Article  PubMed  Google Scholar 

  10. Provenzale JM, Jahan R, Naidich TP et al (2003) Assessment of the patient with hyperacute stroke: imaging and therapy. Radiology 229:347–359

    Article  PubMed  Google Scholar 

  11. Remonda L, Senn P, Barth A et al (2002) Contrast-enhanced 3D MR angiography of the carotid artery: comparison with conventional digital subtraction angiography. Am J Neuroradiol 23:213–219

    PubMed  Google Scholar 

  12. Jauch EC, Saver JL, Adams HP Jr et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44:870–947

    Article  PubMed  Google Scholar 

  13. Singer OC, Kurre W, Humpich MC, et al. MR Stroke Study Group Investigators (2009) Risk assessment of symptomatic intracerebral hemorrhage after thrombolysis using DWIASPECTS. Stroke 40:2743–2748

    Google Scholar 

  14. Nezu T, Koga M, Kimura K et al (2010) Pretreatment ASPECTS on DWI predicts 3-month outcome following rt-PA: SAMURAI rt-PA Registry. Neurology 75:555–561

    Article  CAS  PubMed  Google Scholar 

  15. Schaefer PW, Pulli B, Copen WA et al (2015) Combining MRI with NIHSS thresholds to predict outcome in acute ischemic stroke: value for patient selection. Am J Neuroradiol 36(2):259–264

    Article  CAS  PubMed  Google Scholar 

  16. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion- weighted MR imaging of the brain. Radiology 217:331–345

    Article  CAS  PubMed  Google Scholar 

  17. Fiebach JB, Schellinger PD, Jansen O et al (2002) CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 33:2206–2210

    Article  CAS  PubMed  Google Scholar 

  18. Schellinger PD, Bryan RN, Caplan LR et al (2010) Evidence-based guideline: the role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 75(2):177–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ringelstein EB (2005) Ultrafast magnetic resonance imaging protocols in stroke. J Neurol Neurosurg Psychiatry 76(7):905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. von Kummer R, Meyding-Lamadé U, Forsting M et al (1994) Sensitivity and prognostic value of early CT in occlusion of the middle cerebral artery trunk. Am J Neuroradiol 15(1):9–15

    Google Scholar 

  21. Mishra NK, Albers GW, Davis SM et al (2010) Mismatch-based delayed thrombolysis: a meta-analysis. Stroke 41(1):e25–e33

    Article  PubMed  Google Scholar 

  22. Yoo AJ, Verduzco LA, Schaefer PW et al (2009) MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke 40:2046–2054

    Article  PubMed  PubMed Central  Google Scholar 

  23. Allen LM, Hasso AN, Handwerker J et al (2012) Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics 32(5):1285–1297

    Article  PubMed  Google Scholar 

  24. Xu X-Q, Zu QQ, Lu SS et al (2014) Use of FLAIR imaging to identify onset time of cerebral ischemia in a canine model. AJNR Am J Neuroradiol 35(2):311–316

    Article  PubMed  Google Scholar 

  25. Villringer A, Rosen BR, Belliveau JW et al (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    Article  CAS  PubMed  Google Scholar 

  26. Mattle HP, Arnold M, Lindsberg PJ et al (2011) Basilar artery occlusion. Lancet Neurol 10(11):1002–1014

    Article  PubMed  Google Scholar 

  27. Mukherjee P, Bahn MM, McKinstry RC et al (2000) Differences between gray matter and white matter water diffusion in stroke: diffusion-tensor MR imaging in 12 patients. Radiology 215(1):211–212

    Article  CAS  PubMed  Google Scholar 

  28. Meinzer M, Mohammadi S, Kugel H et al (2010) Integrity of the hippocampus and surrounding white matter is correlated with language training success in aphasia. Neuroimage 53(1):283–290

    Article  PubMed  Google Scholar 

  29. Crofts JJ, Higham DJ, Bosnell R et al (2011) Network analysis detects changes in the contralesional hemisphere following stroke. Neuroimage 54(1):161–169

    Article  CAS  PubMed  Google Scholar 

  30. Yan G, Dai Z, Xuan Y, Wu R (2015) Early metabolic changes following ischemia onset in rats: an in vivo diffusion-weighted imaging and 1H-magnetic resonance spectroscopy study at 7.0 T. Mol Med Rep 11(6):4109–4114

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Heiss WD (2014) Radionuclide imaging in ischemic stroke. J Nucl Med 55(11):1831–1841

    Article  CAS  PubMed  Google Scholar 

  32. Dufouil C, de Kersaint-Gilly A, Besançon V et al (2001) Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI Cohort. Neurology 56:921–926

    Article  CAS  PubMed  Google Scholar 

  33. De Leeuw F, de Groot JC, Oudkerk M et al (2002) Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125:765–772

    Article  PubMed  Google Scholar 

  34. Fisher CM (1982) Lacunar strokes and infarcts: a review. Stroke 32:871–876

    CAS  Google Scholar 

  35. Loos CM, Staals J, Wardlaw JM et al (2012) Cavitation of deep lacunar infarcts in patients with first-ever lacunar stroke: a 2-year follow-up study with MR. Stroke 43(8):2245–2247

    Article  PubMed  Google Scholar 

  36. Potter GM, Doubal FN, Jackson CA et al (2011) Counting cavitating lacunes underestimates the burden of lacunar infarction. Stroke 41:267–272

    Article  Google Scholar 

  37. Horowitz DR, Tuhrim S, Weinberger JM et al (1992) Mechanisms in lacunar infarction. Stroke 23:325–327

    Article  CAS  PubMed  Google Scholar 

  38. Marks MP (2009) Cerebral ischemia and infarction. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine, vol 1, 4th edn. Williams & Wilkins, Philadelphia, pp 772–825

    Google Scholar 

  39. Grinberg LT, Thal DR (2010) Vascular pathology in the aged human brain. Acta Neuropathol 119(3):277–290

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dainer HM, Smirniotopoulos JG (2008) Neuroimaging of hemorrhage and vascular malformations. Semin Neurol 28(4):533–547

    Article  PubMed  Google Scholar 

  41. Latchaw RE, Alberts MJ, Lev MH, et al; American Heart Association Council on Cardiovascular Radiology and Intervention, Stroke Council, and the Interdisciplinary Council on Peripheral Vascular Disease (2009) Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke 40:3646–3678

    Google Scholar 

  42. Schellinger PD, Jansen O, Fiebach JB et al (1999) A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke 30:765–768

    Article  CAS  PubMed  Google Scholar 

  43. Bersano A, Debette S, Zanier ER et al (2012) The genetics of small-vessel disease. Curr Med Chem 19(24):4124–4141

    Article  CAS  PubMed  Google Scholar 

  44. Debette S, Beiser A, DeCarli C et al (2010) Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia and mortality. The Framingham offspring study. Stroke 41:600–606

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Groot JC, de Leeuw FE, Oudkerk M et al (2000) Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol 47:145–151

    Article  PubMed  Google Scholar 

  46. Zhu YC, Tzourio C, Soumare A et al (2010) Severity of dilated Virchow-Robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease: a population-based study. Stroke 41:2483–2490

    Article  PubMed  Google Scholar 

  47. Charidimou A, Meegahage R, Fox Z et al (2013) Enlarged perivascular spaces as a marker of underlying arteriopathy in intracerebral hemorrhage: a multicenter MRI cohort study. J Neurol Neurosurg Psychiatry 84:624–629

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fazekas F, Kleinert R, Roob G et al (1999) Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol 20:637–642

    CAS  PubMed  Google Scholar 

  49. Greenberg SM, Vernooij MW, Cordonnier C et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8:165–174

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gao T, Wang Y, Zhang Z (2008) Silent cerebral microbleeds on susceptibility-weighted imaging of patients with ischemic stroke and leukoaraiosis. Neurol Res 30:272–276

    Article  PubMed  Google Scholar 

  51. Cordonnier C, Al-Shahi Salman R, Wardlaw J (2007) Spontaneous brain micro- bleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 130:1988–2003

    Article  PubMed  Google Scholar 

  52. Vernooij MW, van der Lugt A, Ikram MA et al (2008) Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 70(14):1208–1214

    Article  CAS  PubMed  Google Scholar 

  53. Breteler MM, van Swieten JC, Bots ML et al (1994) Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology 44:1246–1252

    Article  CAS  PubMed  Google Scholar 

  54. Skoog I, Lernfelt B, Landahl S et al (1996) 15-year longitudinal study of blood pressure and dementia. Lancet 347:1141–1145

    Article  CAS  PubMed  Google Scholar 

  55. Kilander L, Nyman H, Boberg M et al (1998) Hypertension is related to cognitive impairment: a 20-year follow-up of 999 men. Hypertension 31:780–786

    Article  CAS  PubMed  Google Scholar 

  56. Elias MF, Elias PK, Sullivan LM et al (2003) Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes Relat Metab Disord 27:260–268

    Article  CAS  PubMed  Google Scholar 

  57. Peila R (2001) Joint effect of the APOE gene and midlife systolic blood pressure on late-life cognitive impairment: the Honolulu-Asia aging study. Stroke 32:2882–2889

    Article  CAS  PubMed  Google Scholar 

  58. McEvoy LK, Fennema-Notestine C, Eyler LT et al (2015) Hypertension-related alterations in white matter microstructure detectable in middle age. Hypertension 66:317–323

    Article  CAS  PubMed  Google Scholar 

  59. Rosano C (2015) Longitudinal systolic blood pressure characteristics and integrity of white matter tracts in a cohort of very old black and white adults. Am J Hypertens 28:326–334

    Article  PubMed  Google Scholar 

  60. Gorelick PB, William M (2005) Feinberg lecture: cognitive vitality and the role of stroke and cardiovascular disease risk factors. Stroke 36:875–879

    Article  PubMed  Google Scholar 

  61. Troncoso JC (2008) Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Ann Neurol 64:168–176

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lezak MD, Howieson DB, Loring DW (2004) Neuropsychological assessment (Fourth edition). Oxford University Press, New York

    Google Scholar 

  63. Waldstein SR, Manuck SB, Ryan CM et al (1991) Neuropsychological correlates of hypertension: review and methodologic consideration. Psychol Bull 110:451–468

    Article  CAS  PubMed  Google Scholar 

  64. Lande MB, Kupferman JC, Adams HR (2012) Neurocognitive alterations in hypertensive children and adolescents. J Clin Hypertens 14:353–359

    Article  Google Scholar 

  65. Jennings JR, Zanstra Y (2009) Is the brain the essential in hypertension? Neuroimage 47:914–921

    Article  PubMed  PubMed Central  Google Scholar 

  66. Miller BL, Cummings JL (eds) (2007) The human frontal lobes. Functions and disorders. The Guilford Press, New York

    Google Scholar 

  67. Eftekhari H, Uretsky S, Messerli FH (2007) Blood pressure, cognitive dysfunction, and dementia. J Am Soc Hypertens 1:135–144

    Article  PubMed  Google Scholar 

  68. Birns J, Kalra L (2009) Cognitive function and hypertension. J Hum Hypertens 23:86–96

    Article  CAS  PubMed  Google Scholar 

  69. Seux ML, Forette F (1999) Effects of hypertension and its treatment on mental function. Curr Hypertens Rep 3:232–237

    Article  Google Scholar 

  70. Elias MF, Goodell AL, Dore GA (2012) Hypertension and cognitive functioning. A perspective in historical context. Hypertension 60:260–268

    Article  CAS  PubMed  Google Scholar 

  71. Cabeza R, Nyberg L, Park D (2005) Cognitive neuroscience of aging. Linking cognitive and cerebral aging. Oxford University Press, Oxford/New York

    Google Scholar 

  72. Albert ML (2005) Subcortical dementia: historical review and personal view. Neurocase 11:243–245

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Gasecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gasecki, D., Szurowska, E., Jodzio, K. (2016). Imaging Techniques for the Detection and Diagnosis of Brain Damage in Hypertension. In: Coca, A. (eds) Hypertension and Brain Damage. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-32074-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32074-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32072-4

  • Online ISBN: 978-3-319-32074-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics