Advertisement

Outcomes Based on Surgery and Rehabilitation

  • Stefano ZaffagniniEmail author
  • Tom Chao
  • Richard Joreitz
  • Nicola Lopomo
  • Cecilia Signorelli
  • Volker Musahl
Chapter
  • 1.1k Downloads

Abstract

The ability to assess outcomes during and after ACL reconstruction continues to be an advancing field of study as efforts to improve the surgical and rehabilitation parameters evolve. Knee laxity is a specific component that is often used to determine the quality of the ligament reconstruction. Currently, the technology to measure knee laxity includes intraoperative navigational systems; portable devices such as accelerometers, gyroscopes and image analysis software; dynamic roentgen stereophotogrammetric analysis (radiostereometry); and full-body motion analysis systems. These devices provide objective data in terms of the kinematics of the knee following an ACL reconstruction under controlled testing environments. In combination with refinements in the analysis of surgical techniques and surgical outcomes, guidelines in terms of rehabilitation protocols in the ACL-reconstructed patient are essential to allow the injured athlete to progress effectively towards the goal of safe return to full function.

Keywords

Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Navigation System Knee Flexion Anterior Cruciate Ligament Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adams D, Logerstedt D, Hunter-Giordano A, Axe MJ, Snyder-Mackler L (2012) Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther 42(7):601–614CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aldrian S, Valentin P, Wondrasch B, Krusche-Mandi I, Ostermann RC, Platzer P, Hofbauer M (2014) Gender differences following computer-navigated single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22(9):2145–2152CrossRefPubMedGoogle Scholar
  3. 3.
    Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE (2013) Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med 41(7):1549–1558CrossRefPubMedGoogle Scholar
  4. 4.
    Augustsson J, Thomee R, Karlsson J (2004) Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12(5):350–356CrossRefPubMedGoogle Scholar
  5. 5.
    Bonanzinga T, Signorelli C, Lopomo N, Grassi A, Neri MP, Filardo G, Zaffagnini S, Marcacci M (2015) Biomechanical effect of posterolateral corner sectioning after ACL injury and reconstruction. Knee Surg Sports Traumatol Arthrosc 23(10):2918–2924CrossRefPubMedGoogle Scholar
  6. 6.
    Barber-Westin SD, Noyes FR (2011) Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 27(12):1697–1705CrossRefPubMedGoogle Scholar
  7. 7.
    Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18(9):1269–1276CrossRefPubMedGoogle Scholar
  8. 8.
    Bull AM, Earnshaw PH, Smith A, Katchburian MV, Hassan AN, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84(7):1075–1081CrossRefPubMedGoogle Scholar
  9. 9.
    Chmielewski TL, Jones D, Day T, Tillman SM, Lentz TA, George SZ (2008) The association of pain and fear of movement/reinjury with function during anterior cruciate ligament reconstruction rehabilitation. J Orthop Sports Phys Ther 38(12):746–753CrossRefPubMedGoogle Scholar
  10. 10.
    Cutti AG, Ferrari A, Garofalo P, Raggi M, Cappello A, Ferrari A (2010) ‘Outwalk’: a protocol for clinical gait analysis based on inertial and magnetic sensors. Med Biol Eng Comput 48(1):17–25CrossRefPubMedGoogle Scholar
  11. 11.
    Di Stasi S, Myer GD, Hewett TE (2013) Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J Orthop Sports Phys Ther 43(11):777–792, A1–11CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fox JA, Pierce M, Bojchuk J, Hayden J, Bush-Joseph CA, Bach BR Jr (2004) Revision anterior cruciate ligament reconstruction with nonirradiated fresh-frozen patellar tendon allograft. Arthroscopy 20(8):787–794CrossRefPubMedGoogle Scholar
  13. 13.
    Fujii M, Sasaki Y, Araki D, Furumatsu T, Miyazawa S, Ozaki T, Linde-Rosen M, Smokinski P, Fu FH (2014) Evaluation of the semitendinosus tendon graft shift in the bone tunnel: an experimental study. Knee Surg Sports Traumatol Arthrosc. [Epub ahead of print]. DOI  10.1007/s00167-014-3461-z
  14. 14.
    Gribble PA, Hertel J, Plisky P (2012) Using the star excursion balance test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. J Athl Train 47(3):339–351PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hewett TE, Di Stasi SL, Myer GD (2013) Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med 41(1):216–224CrossRefPubMedGoogle Scholar
  16. 16.
    Hoshino Y, Araujo P, Ahlden M, Samuelsson K, Muller B, Hofbauer M, Wolf MR, Irrgang JJ, Fu FH, Musahl V (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 21(4):975–980CrossRefPubMedGoogle Scholar
  17. 17.
    Hoshino Y, Araujo P, Irrgang JJ, Fu FH, Musahl V (2012) An image analysis method to quantify the lateral pivot shift test. Knee Surg Sports Traumatol Arthrosc 20(4):703–707CrossRefPubMedGoogle Scholar
  18. 18.
    Hoshino Y, Musahl V, Irrgang JJ, Lopomo N, Zaffagnini S, Karlsson J, Kuroda R, Fu FH (2015) Quantitative evaluation of the Pivot shift test, relationship to clinical Pivot shift grade. American Orthopaedic Society for Sports Medicine, OrlandoGoogle Scholar
  19. 19.
    Hui C, Salmon LJ, Kok A, Maeno S, Linklater J, Pinczewski LA (2011) Fifteen-year outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft for “isolated” anterior cruciate ligament tear. Am J Sports Med 39(1):89–98CrossRefPubMedGoogle Scholar
  20. 20.
    Imbert P, Belvedere C, Leardini A (2015) Knee laxity modifications after ACL rupture and surgical intra- and extra-articular reconstructions: intra-operative measures in reconstructed and healthy knees. Knee Surg Sports Traumatol Arthrosc. [Epub ahead of print]. DOI:  10.1007/s00167-015-3653-1
  21. 21.
    Iriuchishima T, Ryu K, Aizawa S, Fu FH (2014) The difference in centre position in the ACL femoral footprint inclusive and exclusive of the fan-like extension fibres. Knee Surg Sports Traumatol Arthrosc 24(1):254–259Google Scholar
  22. 22.
    Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy 25(5):488–495CrossRefPubMedGoogle Scholar
  23. 23.
    Klos TV (2014) Computer-assisted anterior cruciate ligament reconstruction. Four generations of development and usage. Sports Med Arthrosc 22(4):229–236PubMedGoogle Scholar
  24. 24.
    Leys T, Salmon L, Waller A, Linklater J, Pinczewski L (2012) Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med 40(3):595–605CrossRefPubMedGoogle Scholar
  25. 25.
    Lopomo N, Bignozzi S, Martelli S et al (2009) Reliability of a navigation system for intra-operative evaluation of antero-posterior knee joint laxity. Comput Biol Med 39(3):280–285CrossRefPubMedGoogle Scholar
  26. 26.
    Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani-Muccioli GM, Neri MP, Visani A, Marcacci M, Zaffagnini S (2014) Can rotatory knee laxity be predicted in isolated anterior cruciate ligament surgery? Int Orthop 38(6):1167–1172CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lopomo N, Zaffagnini S, Amis AA (2013) Quantifying the pivot shift test: a systematic review. Knee Surg Sports Traumatol Arthrosc 21(4):767–783CrossRefPubMedGoogle Scholar
  28. 28.
    Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28(2):164–169PubMedGoogle Scholar
  29. 29.
    Lynch AD, Logerstedt DS, Grindem H, Eitzen I, Hicks GE, Axe MJ, Engebretsen L, Risberg MA, Snyder-Mackier L (2013) Consensus criteria for defining ‘successful outcome’ after ACL injury and reconstruction: a Delaware-Oslo ACL cohort investigation. Br J Sports Med 49(5):335–342Google Scholar
  30. 30.
    Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, Kirkendall DT, Garrett W (2005) Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med 33(7):1003–1010CrossRefPubMedGoogle Scholar
  31. 31.
    Martelli S, Lopomo N, Bignozzi S, Zaffagnini S, Visani A (2007) Validation of a new protocol for navigated intraoperative assessment of knee kinematics. Comput Biol Med 37(6):872–878CrossRefPubMedGoogle Scholar
  32. 32.
    Martelli S, Zaffagnini S, Falcioni B, Motta M (2001) Determination of an optimal kinematic protocol for computer-assisted evaluation of anterior cruciate ligament deficiency. Ann Biomed Eng 29(12):1112–1121CrossRefPubMedGoogle Scholar
  33. 33.
    Marx RG, Jones EC, Angel M, Wickiewicz TL, Warren RF (2003) Beliefs and attitudes of members of the American Academy of Orthopaedic Surgeons regarding the treatment of anterior cruciate ligament injury. Arthroscopy 19(7):762–770CrossRefPubMedGoogle Scholar
  34. 34.
    Monaco E, Ferretti A, Labianca L, Maestri B, Speranza A, Kelly MJ, D’Arrigo C (2012) Navigated knee kinematics after cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc 20(5):870–877CrossRefPubMedGoogle Scholar
  35. 35.
    Muller B, Hofbauer M, Rahnemai-Azar AA, Wolf M, Araki D, Hoshino Y, Araujo P, Debski RE, Irrgang JJ, Fu FH, Musahl V (2015) Development of computer tablet software for clinical quantification of lateral knee compartment translation during the pivot shift test. Comput Methods Biomech Biomed Engin 19(2):217–228Google Scholar
  36. 36.
    Musahl V, Hoshino Y, Becker R, Karlsson J (2012) Rotatory knee laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc 20(4):601–602CrossRefPubMedGoogle Scholar
  37. 37.
    Neeter C, Gustavsson A, Thomee P, Augustsson J, Thomee R, Karlsson J (2006) Development of a strength test battery for evaluating leg muscle power after anterior cruciate ligament injury and reconstruction. Knee Surg Sports Traumatol Arthrosc 14(6):571–580CrossRefPubMedGoogle Scholar
  38. 38.
    Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pearle AD, Solomon DJ, Wanich T, Moreau-Gaudry A, Granchi CC, Wickiewicz TL, Warren RF (2007) Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med 35(8):1315–20CrossRefPubMedGoogle Scholar
  40. 40.
    Prins M (2006) The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother 52(1):66CrossRefPubMedGoogle Scholar
  41. 41.
    Schmitt LC, Paterno MV, Hewett TT (2012) The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 42(9):750–759CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Signorelli C, Bonanzinga T, Lopomo N, Marcheggiani-Muccioli GM, Bignozzi S, Filardo G, Zaffagnini S, Marcacci M (2013) Do pre-operative knee laxity values influence post-operative ones after anterior cruciate ligament reconstruction? Scand J Med Sci Sports 23(4):e219–e224CrossRefPubMedGoogle Scholar
  43. 43.
    Thomee R, Kaplan Y, Kvist J, Myklebust G, Risberg MA, Theisen D, Tsepis E, Werner S, Wondrasch B, Witvruow E (2011) Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19(11):1798–1805CrossRefPubMedGoogle Scholar
  44. 44.
    Wang JH, Kim JG, Ahn JH, Lim HC, Hoshino Y, Fu FH (2012) Is femoral tunnel length correlated with the intercondylar notch and femoral condyle geometry after double-bundle anterior cruciate ligament reconstruction using the transportal technique? An in vivo computed tomography analysis. Arthroscopy 28(8):1094–1103CrossRefPubMedGoogle Scholar
  45. 45.
    Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M (2006) New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results. Knee Surg Sports Traumatol Arthrosc 14(9):811–816CrossRefPubMedGoogle Scholar
  46. 46.
    Zaffagnini S, Marcheggiani Muccioli GM, Signorelli C, Lopomo N, Grassi A, Bonanzinga T, Nitri M, Marcacci M (2014) Anatomic and nonanatomic double-bundle anterior cruciate ligament reconstruction: an in vivo kinematic analysis. Am J Sports Med 42(3):708–715CrossRefPubMedGoogle Scholar
  47. 47.
    Zaffagnini S, Signorelli C, Lopomo N, Bonanzinga T, Marchegiiani-Muccioli GM, Bignozzi S, Visani A, Marcacci M (2012) Anatomic double-bundle and over-the-top single-bundle with additional extra-articular tenodesis: an in vivo quantitative assessment of knee laxity in two different ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 20(1):153–159CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Stefano Zaffagnini
    • 1
    Email author
  • Tom Chao
    • 2
  • Richard Joreitz
    • 2
  • Nicola Lopomo
    • 1
  • Cecilia Signorelli
    • 1
  • Volker Musahl
    • 3
  1. 1.Laboratorio di Biomeccanica e Innovazione TecnologicaInstituto Ortopedico RizzoliBolognaItaly
  2. 2.Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA
  3. 3.Department of Orthopaedic SurgeryUPMC Center for Sports MedicinePittsburghUSA

Personalised recommendations