Advertisement

The Dynamic Interplay Between Active and Passive Knee Stability: Implications for Management of the High ACL Injury Risk Athlete

  • Ravi K. Grandhi
  • Dai Sugimoto
  • Mike Posthumus
  • Daniel Schneider
  • Gregory D. MyerEmail author
Chapter
  • 1.1k Downloads

Abstract

Anterior cruciate ligament (ACL) injury is a common problem affecting athletes. Individuals with certain active (movement, training, and growth) and passive (genetics, hormones, anatomy) factors are at increased risk of injury. There is dynamic interplay between the active and passive factors that is directly attributable to an increased risk for ACL injury. Oftentimes, those individuals with both passive and active factors are at the highest risk for ACL injury. Identifying these individuals and providing additional training (i.e., neuromuscular training) have the best potential to mitigate the injury risk.

Keywords

ACL rupture Ligament laxity Anatomical variation and growth anomalies Trunk and ligament relationship Mechanical mechanism to lateral trunk motion and knee load Quadriceps training Injury prevention Neuromuscular training 

Bibliography

  1. 1.
    Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in National Collegiate Athletic Association Basketball and Soccer: A 13-year review. Am J Sports Med 33(4):524–531PubMedCrossRefGoogle Scholar
  2. 2.
    Agel J, Olson DE, Dick R et al (2007) Descriptive epidemiology of collegiate women’s basketball injuries: National Collegiate Athletic Association Injury Surveillance System, 1988-1989 through 2003-2004. J Athl Train 42(2):202–210PubMedPubMedCentralGoogle Scholar
  3. 3.
    Altinisik J, Meric G, Erduran M et al (2015) The BstUI and DpnII variants of the COL5A1 gene are associated with tennis elbow. Am J Sports Med 20(10):1784–1789CrossRefGoogle Scholar
  4. 4.
    Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Me 23:694–701CrossRefGoogle Scholar
  5. 5.
    Beye JA, Hart DA, Bray RC, Mcdougall JJ, Salo PT (2008) Injury-induced changes in mRNA levels differ widely between anterior cruciate ligament and medial collateral ligament. Am J Sports Med 36(7):1337–1346PubMedCrossRefGoogle Scholar
  6. 6.
    Boden BP, Dean GS, Feagin JA, Garrett WE (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMedGoogle Scholar
  7. 7.
    Boden BP, Griffin L, Garett W (2000) Etiology and prevention of noncontact ACL injury. Phys Sportsmed 28(4):53–60PubMedCrossRefGoogle Scholar
  8. 8.
    Boden BP, Sheehan FT, Torg JS, Hewett TE (2010) Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg 18(2):520–527PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Burger M, de Wet H, Collins M (2015) The COL5A1 gene is associated with increased risk of carpal tunnel syndrome. Clin Rheumatol 34(4):767–774PubMedCrossRefGoogle Scholar
  10. 10.
    Bytomski JR, Moorman C (2010) Oxford American Handbook of Sports Medicine. Oxford University Press, New YorkGoogle Scholar
  11. 11.
    Charlton WP, St. John TA, Ciccotti MG et al (2002) Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med 30:329–333PubMedGoogle Scholar
  12. 12.
    Cooney AD, Kazi Z, Caplan N, Newby M, Gibson ASC, Kader DF (2012) The relationship between quadriceps angle and tibial tuberosity–trochlear groove distance in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc 20(12):2399–2404PubMedCrossRefGoogle Scholar
  13. 13.
    Domzalski M, Grzelak P, Gabos P (2010) Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 34(5):703–707PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dugan SA (2005) Sports-related knee injuries in female athletes: what gives? Am J Phys Med Rehabil 84(2):122–130PubMedCrossRefGoogle Scholar
  15. 15.
    Faude O, Junge A, Kindermann W et al (2006) Risk factors for injuries in elite female soccer players. Br J Sports Med 40(9):785–790PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ficek K, Ciezczyk P, Kaczmarczyk M et al (2013) Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J Sci Med Sport 16(5):396–400PubMedCrossRefGoogle Scholar
  17. 17.
    Ford KR, Myer GD, Hewett TE (2003) Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc 35:1745–1750PubMedCrossRefGoogle Scholar
  18. 18.
    Ford KR, Myer GD, Toms HE, Hewett TE (2005) Gender differences in the kinematics of unanticipated cutting in young athletes. Med Sci Sports 37:124–129Google Scholar
  19. 19.
    Gerecke DR, Olson PF, Koch M et al (1997) Complete primary structure of two splice variants of collagen XII, and assignment of alpha 1(XII) collagen (COL12A1), alpha 1(IX) collagen (COL9A1), and alpha 1(XIX) collagen (COL19A1) to human chromosome 6q12-q13. Genomics 41:236–242PubMedCrossRefGoogle Scholar
  20. 20.
    Gormeli CA, Gormeli G, Ozturk YB, Ozdemir Z, Kahraman A (2014) The effect of the intercondylar notch width index on anterior cruciate ligament injuries a study on groups with unilateral and bilateral ACL injury. Orthop J Sports Med 2(11):supppl3Google Scholar
  21. 21.
    Heras Yague P, De La Fuente J (1998) Changes in height and motor performance relative to peak height velocity: a mixed-longitudinal study of Spanish boys and girls. Am J Hum Biol 10:647–660CrossRefGoogle Scholar
  22. 22.
    Hettrich CM, Dunn WR, Reinke EK et al (2013) The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: Two- and 6 year follow-up results from a multicenter cohort. Am J Sports Med 41(7):1534–1540PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hewett TE, Myer GD (2011) The mechanistic connection between the trunk, Hip, knee, and anterior cruciate ligament injury. Exerc Sport Sci Rev 39(4):161–166PubMedPubMedCentralGoogle Scholar
  24. 24.
    Hewett TE, Myer GD, Ford KR et al (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33:492–501PubMedCrossRefGoogle Scholar
  25. 25.
    Hewett TE, Myer GD, Zazulak BT (2008) Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. J Sci Med Sport 11(5):452–459PubMedCrossRefGoogle Scholar
  26. 26.
    Hewett TE, Stroupe AL, Nance TA, Noyes FR (1996) Plyometric training in female athletes decreased impact forces and increased hamstring torques. Am J Sports Med 24:765–773PubMedCrossRefGoogle Scholar
  27. 27.
    Hewett TE, Torg JS, Boden BP (2009) Video analysis of trunk knee motion during Non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med 43:417–422PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ireland ML (1996) Anterior cruciate ligament injuries in young female athletes: high risks call for new approaches. Your Patient Fitness 10(5):26–30Google Scholar
  29. 29.
    Jin H, Hof RJV, Albagha OM, Ralston SH (2009) Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis. Hum Mol Genet 18(15):2729–2738PubMedCrossRefGoogle Scholar
  30. 30.
    Keays SL, Keays R, Newcombe PA (2016) Femoral intercondylar notch width size: a comparison between siblings with and without anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 24(3):672–679Google Scholar
  31. 31.
    Khoschnau S, Melhus H, Jacobson A et al (2008) Type I collagen alpha1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. Am J Sports Med 36(12):2432–2436PubMedCrossRefGoogle Scholar
  32. 32.
    Kikuchi N, Nakazato K, Min SK, Ueda D, Igawa S (2014) The ACTN3 R577X polymorphism is associated with muscle power in male Japanese athletes. J Strength Cond Res 28(7):1783–1789PubMedCrossRefGoogle Scholar
  33. 33.
    Komi PV, Klissouras V, Karvinen E (1973) Genetic variation in neuromuscular performance. Int Z Angew Physiol 31(4):289–304PubMedGoogle Scholar
  34. 34.
    Krosshaug T, Nakamae A, Boden BP (2006) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35(3):359–367PubMedCrossRefGoogle Scholar
  35. 35.
    Krosshaug T, Bahr R (2005) A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences. J Biomech 38:919–929PubMedCrossRefGoogle Scholar
  36. 36.
    Lee BI (2009) Min, KD, Choi, HS, et al. (2009) immunohistochemical study of mechanoreceptors in the tibial remnant of the ruptured anterior cruciate ligament in human knees. Knee Surg Sports Traumatol Arthrosc 17(9):1095–1101PubMedCrossRefGoogle Scholar
  37. 37.
    Linford CW, Hopkins JT, Schulthies SS et al (2006) Effects of neuromuscular training on the reaction time and electromechanical delay of the peroneus longus muscle. Arch Phys Med Rehabil 87(3):395–401PubMedCrossRefGoogle Scholar
  38. 38.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35:1756–1769PubMedCrossRefGoogle Scholar
  39. 39.
    Lohmander LS, Stenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152PubMedCrossRefGoogle Scholar
  40. 40.
    Loko J, Aule R, Sikkut T et al (2000) Motor performance status in 10 to 17-year-old Estonian girls. Scand J Med Sci Sport 10:109–113CrossRefGoogle Scholar
  41. 41.
    Mannion S, Mtintsilana A, Posthumus M et al (2014) Genes encoding proteoglycans are associated with the risk of anterior cruciate ligament ruptures. Br J Sports Med 48(22):1640–1646PubMedCrossRefGoogle Scholar
  42. 42.
    Martin R, Hugentobler J, Myer GD (2011) Is ACL injury all too familial for some patients? Sports Physiother 2:19–24Google Scholar
  43. 43.
    Mclean SG, Huang X, van den Bogert AJ (2005) Association between lower extremity posture at contact and peak when the tibia moves too far forward implications for ACL injury. Clin Biomech 20(8): 863–870CrossRefGoogle Scholar
  44. 44.
    Merni F, Balboni M, Bargellini S et al (1981) Differences in males and females in joint movement range during growth. Med Sport 15:168–175Google Scholar
  45. 45.
    Mohammed J, Mohammed H, Abdinejad F, Hamid N (2007) Q-angle: an invaluable parameter for evaluation of anterior knee pain. Arch Iran Med 10(1):24–26Google Scholar
  46. 46.
    Mokone GG, Schwellnus MP, Noakes TD, Collins M (2006) The COL5A1 gene and Achilles tendon pathology. Scand J Med Sci Sports 16(1):19–26PubMedCrossRefGoogle Scholar
  47. 47.
    Myer GD, Faigenbaum AD, Ford KR et al (2011) When to initiate integrative neuromuscular training to reduce sports-related injuries and enhance health in youth? Curr Sports Med Rep 10(3):157–166CrossRefGoogle Scholar
  48. 48.
    Myer GD, Ford KR, Barber KD et al (2009) The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med 19(1):3–8PubMedCrossRefGoogle Scholar
  49. 49.
    Myer GD, Ford KR, Brent JL, Hewett TE (2006) The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res 20(2):345–353PubMedGoogle Scholar
  50. 50.
    Myer GD, Ford KR, Brent JL, Hewett TE (2007) Differential neuromuscular training effects on ACL injury risk factors in “high-risk” versus “low-risk” athletes. BMC Musculoskelet Disord 8(39):1–7Google Scholar
  51. 51.
    Myer GD, Ford KR, Khoury J et al (2011) Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br J Sports Med 45:245–252PubMedCrossRefGoogle Scholar
  52. 52.
    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2010) Development and validation of a clinic- based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am J Sports Med 20(10):1–10Google Scholar
  53. 53.
    Myer GD, Ford KR, Palumbo JP, Hewett TE (2005) Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J Strength Cond Res 19(1):51–60PubMedGoogle Scholar
  54. 54.
    Myer GD, Ford KR, Paterno MV et al (2008) The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med 36(6):1073–1080PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Myer GD, Ford KR, Stasi SLD et al (2015) High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: Is PFP itself a predictor for subsequent ACL injury? Br J Sports Med 49:118–122PubMedCrossRefGoogle Scholar
  56. 56.
    Myer GD, Ford KR, Hewett TE (2004) Rationale and Clinical Techniques for Anterior Cruciate Ligament Injury Prevention Among Female Athletes. J Athl Train 39(4):352–364PubMedPubMedCentralGoogle Scholar
  57. 57.
    Myer GD, Heidt RS, Waits C et al (2013) Sex comparison of familial predisposition to anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 22(2):387–391CrossRefGoogle Scholar
  58. 58.
    Myer GD, Lloyd RS, Brent JL, Faigenbaum AD (2013) How young is too young to start training? ACSMs Health Fit J 17(5):14–23PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Myer GD, Sugimoto D, Thomas S, Hewett TE (2013) The influence of age on the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: a meta-analysis. Am J Sports Med 41(1):1–25Google Scholar
  60. 60.
    Myklebust G, Maehlum S, Engebretsen L et al (1997) Registration of cruciate ligament injuries in Norwegian top level team handball. A prospective study involving two seasons. Scand J Med Sci Sports 7:289–292PubMedCrossRefGoogle Scholar
  61. 61.
    Nagano Y, Ida H, Akai M, Fukubayashi T (2007) Gender differences in knee kinematics and muscle activity during single limb drop landing. Knee 14:218–223PubMedCrossRefGoogle Scholar
  62. 62.
    National Institute of Arthritis and Musculoskeletal and Skin Diseases (2013) Handout on health sports injuries. http://www.niams.nih.gov/Health_Info/Sports_Injuries/default.asp#ra_13. Accessed 25 Feb 2015
  63. 63.
    Nicholas JA, Hirshman EB (1995) The lower extremity and spine in sports medicine, vol 2. Mosby, St. LouisGoogle Scholar
  64. 64.
    Øiestad BE, Holm I, Engebretsen L, Risberg MA (2010) The association between radiographic knee osteoarthritis and knee symptoms, function and quality of life 10–15 years after anterior cruciate ligament reconstruction. Br J Sports Med 45(7):583–588PubMedCrossRefGoogle Scholar
  65. 65.
    Orysiak J, Busko K, Michalski R et al (2014) Relationship between ACTN3 R577X polymorphism and maximal power output in elite Polish athletes. Medicina 50(5):303–308PubMedCrossRefGoogle Scholar
  66. 66.
    Ostenberg A, Roos H (2000) Injury risk factors in female European football. A prospective study of 123 players during one season. Scand J Med Sci Sports 10:279–285PubMedCrossRefGoogle Scholar
  67. 67.
    Otzel DM, Chow JW, Tillman MD (2015) Long-term deficits in quadriceps strength and activation following anterior cruciate ligament reconstruction. Phys Ther Sport 16(1):22–28PubMedCrossRefGoogle Scholar
  68. 68.
    Pappas E, Carpas F (2012) Lower extremity kinematic asymmetry in males and female athletes performing jump-landing tasks. J Sci Med Sport 15:87–92PubMedCrossRefGoogle Scholar
  69. 69.
    Paterno MV, Rauh MJ, Schmitt LC et al (2012) Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med 22(2):116–121PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Paterno MV, Schmitt LC, Ford KR et al (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38:1968–1978PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Posthumus M, September AV, Keegan M et al (2009) Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med 43(5):352–356PubMedCrossRefGoogle Scholar
  72. 72.
    Posthumus M, September AV, O’Cuinneagain D et al (2009) The association between the COL12A1 gene and anterior cruciate ligament ruptures. Br J Sports Med 44(16):1160–1165PubMedCrossRefGoogle Scholar
  73. 73.
    Posthumus M, September AV, O’Cuinneagain D et al (2009) The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med 37(11):2234–2240PubMedCrossRefGoogle Scholar
  74. 74.
    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta analysis of the injury of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23(12):1320–1325PubMedCrossRefGoogle Scholar
  75. 75.
    Pufe T, Petersen W, Tillmann B, Mentlein R (2001) The angiogenic peptide vascular endothelial growth factor is expressed in fetal and ruptured tendons. Virchows Arch 439(4):579–585PubMedCrossRefGoogle Scholar
  76. 76.
    Quatman CE, Ford KR, Myer GD et al (2008) The effects of gender and pubertal status on generalized joint laxity in young athletes. J Sci Med Sport 11(3):257–263PubMedCrossRefGoogle Scholar
  77. 77.
    Rahim M, Gibbon A, Hobbs H et al (2014) The association of genes involved in the angiogenesis-associated signaling pathway with risk of anterior cruciate ligament rupture. J Orthop Res 32(12):1612–1618PubMedCrossRefGoogle Scholar
  78. 78.
    Round JM, Jones DA, Honour JW et al (1999) Hormonal factors in the development of differences in strength between boys and girls during adolescence: a longitudinal study. Ann Hum Biol 26(1):49–62PubMedCrossRefGoogle Scholar
  79. 79.
    Salmon L, Russell V, Musgrove T et al (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21(8):948–957PubMedCrossRefGoogle Scholar
  80. 80.
    Santos CG, Pimentel-Coelho PM, Budowle B et al (2015) The heritable path of human physical performance: from single polymorphisms to the “next generation”. Scand J Med Sci Sports (epub)Google Scholar
  81. 81.
    September AV, Cook J, Handley CJ et al (2009) Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br J Sports Med 43(5):357–365PubMedCrossRefGoogle Scholar
  82. 82.
    Shang X, Li Z, Cao X et al (2015) The association between the ACTN3 R577X polymorphism and noncontact acute ankle sprains. J Sports Sci 33(17):1775–1779PubMedCrossRefGoogle Scholar
  83. 83.
    Shelbourne KD, Davis TI, Klootwyk TE (1998) Relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears: a prospective study. Am J Sports Med 26:402–408PubMedGoogle Scholar
  84. 84.
    Shultz SJ, Gansneder BM, Sander TC et al (2006) Absolute serum hormone levels predict the magnitude of change in anterior knee laxity across the menstrual cycle. J Orthop Res 24(2):124–131PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Shultz SJ, Schmitz RJ, Nguyen AD (2008) Research retreat IV: ACL injuries–the gender bias: April 3-5, 2008 Greensboro. J Athl Train 43:530–531PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sigward S, Powers C (2007) Loading characteristics of females exhibiting excessive valgus movements during cutting. Clin Biomech 22:827–833CrossRefGoogle Scholar
  87. 87.
    Silvers HJ, Mandelbaum BR (2007) Prevention of anterior cruciate ligament injury in the female athlete. Br J Sports Med 41(Suppl I):i52–i59PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes: a prospective study. Am J Sports Med 21(4):535–539PubMedCrossRefGoogle Scholar
  89. 89.
    Stępień-Słodkowska M, Ficek K, Maciejewska-Karłowska A et al (2015) Overrepresentation of the COL3A1 AA genotype in Polish skiers with anterior cruciate ligament injury. Biol Sport 32(2):143–147PubMedPubMedCentralGoogle Scholar
  90. 90.
    Stracciolini A, Casciano R, Friedman HL et al (2014) Pediatric sports injuries: a comparison of males versus females. Am J Sports Med 42(4):965–972PubMedCrossRefGoogle Scholar
  91. 91.
    Szekely A, Balota DA, Duchek JM et al (2010) Genetic factors of reaction time performance: DRD4 7-repeat allele associated with slower responses. Genes Brain Behav 10(2):129–136PubMedCrossRefGoogle Scholar
  92. 92.
    Tang Z, Yang L, Xue R et al (2009) Differential expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after a mechanical injury: involvement of the P65 subunit of NF-κB. Wound Repair Regen 17(5):709–716PubMedCrossRefGoogle Scholar
  93. 93.
    Taylor BT, Waxman JP, Richter SJ, Shultz SJ (2013) Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: a systematic review and meta-analysis. Br J Sports Med 49(2):79–87PubMedCrossRefGoogle Scholar
  94. 94.
    Tillman MD, Smith KR, Bauer JA et al (2002) Differences in three intercondylar notch geometry indices between males and females: a cadaver study. Knee 9:41–46PubMedCrossRefGoogle Scholar
  95. 95.
    Uhorchak JM, Scoville CR, Williams GN et al (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31:831–842PubMedGoogle Scholar
  96. 96.
    Vincent B, De Bock K, Ramaekers M et al (2007) ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics 32(1):58–63PubMedCrossRefGoogle Scholar
  97. 97.
    Volver A, Viru A, Viru M (2000) Improvement of motor abilities in pubertal girls. J Sports Med Phys Fitness 40(1):17–25PubMedGoogle Scholar
  98. 98.
    Webster KE, Feller JA, Leigh WB, Richmond AK (2014) Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med 42:641–647PubMedCrossRefGoogle Scholar
  99. 99.
    Wild CY, Steele JR, Munro BJ (2012) Why do girls sustain more anterior cruciate ligament injuries than boys? A review of the changes in estrogen and musculoskeletal structure and function during puberty. Sports Med 42(9):733–749PubMedCrossRefGoogle Scholar
  100. 100.
    Winkel D, Matthijs O, Phelps V, Vleeming A (1997) Diagnosis and treatment of the lower extremities: nonoperative orthopaedic medicine and manual therapy. Aspen, GaithersburgGoogle Scholar
  101. 101.
    Wojtys EM, Brower AM (2010) Anterior cruciate ligament injuries in the prepubescent and adolescent athlete: clinical and research considerations. J Athl Train 45:509–512PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Wright RW, Magnussen RA, Dunn WR, Spindler KP (2011) Ipsilateral graft and contralateral ACL rupture at five years or more following ACL reconstruction: a systematic review. J Bone Joint Surg Am 93(12):1159–1165PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Young K, Samiric T, Feller J, Cook J (2011) Extracellular matrix content of ruptured anterior cruciate ligament tissue. Knee 18(4):242–246PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Ravi K. Grandhi
    • 1
    • 2
  • Dai Sugimoto
    • 3
    • 4
  • Mike Posthumus
    • 5
  • Daniel Schneider
    • 2
    • 6
  • Gregory D. Myer
    • 6
    • 4
    Email author
  1. 1.Department of PediatricsUniversity of CincinnatiCincinnatiUSA
  2. 2.College of Medicine, University of CincinnatiCincinnatiUSA
  3. 3.Division of Sports Medicine, Department of OrthopaedicsBoston Children’s HospitalBostonUSA
  4. 4.The Micheli Center for Sports Injury PreventionWalthamUSA
  5. 5.Division of Exercise Science and Sports MedicineThe University of Cape TownCape TownSouth Africa
  6. 6.Division of Sports MedicineCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations