Skip to main content

The Dynamic Interplay Between Active and Passive Knee Stability: Implications for Management of the High ACL Injury Risk Athlete

  • Chapter
  • First Online:

Abstract

Anterior cruciate ligament (ACL) injury is a common problem affecting athletes. Individuals with certain active (movement, training, and growth) and passive (genetics, hormones, anatomy) factors are at increased risk of injury. There is dynamic interplay between the active and passive factors that is directly attributable to an increased risk for ACL injury. Oftentimes, those individuals with both passive and active factors are at the highest risk for ACL injury. Identifying these individuals and providing additional training (i.e., neuromuscular training) have the best potential to mitigate the injury risk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in National Collegiate Athletic Association Basketball and Soccer: A 13-year review. Am J Sports Med 33(4):524–531

    Article  PubMed  Google Scholar 

  2. Agel J, Olson DE, Dick R et al (2007) Descriptive epidemiology of collegiate women’s basketball injuries: National Collegiate Athletic Association Injury Surveillance System, 1988-1989 through 2003-2004. J Athl Train 42(2):202–210

    PubMed  PubMed Central  Google Scholar 

  3. Altinisik J, Meric G, Erduran M et al (2015) The BstUI and DpnII variants of the COL5A1 gene are associated with tennis elbow. Am J Sports Med 20(10):1784–1789

    Article  Google Scholar 

  4. Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Me 23:694–701

    Article  CAS  Google Scholar 

  5. Beye JA, Hart DA, Bray RC, Mcdougall JJ, Salo PT (2008) Injury-induced changes in mRNA levels differ widely between anterior cruciate ligament and medial collateral ligament. Am J Sports Med 36(7):1337–1346

    Article  PubMed  Google Scholar 

  6. Boden BP, Dean GS, Feagin JA, Garrett WE (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578

    CAS  PubMed  Google Scholar 

  7. Boden BP, Griffin L, Garett W (2000) Etiology and prevention of noncontact ACL injury. Phys Sportsmed 28(4):53–60

    Article  CAS  PubMed  Google Scholar 

  8. Boden BP, Sheehan FT, Torg JS, Hewett TE (2010) Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg 18(2):520–527

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burger M, de Wet H, Collins M (2015) The COL5A1 gene is associated with increased risk of carpal tunnel syndrome. Clin Rheumatol 34(4):767–774

    Article  PubMed  Google Scholar 

  10. Bytomski JR, Moorman C (2010) Oxford American Handbook of Sports Medicine. Oxford University Press, New York

    Google Scholar 

  11. Charlton WP, St. John TA, Ciccotti MG et al (2002) Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med 30:329–333

    PubMed  Google Scholar 

  12. Cooney AD, Kazi Z, Caplan N, Newby M, Gibson ASC, Kader DF (2012) The relationship between quadriceps angle and tibial tuberosity–trochlear groove distance in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc 20(12):2399–2404

    Article  CAS  PubMed  Google Scholar 

  13. Domzalski M, Grzelak P, Gabos P (2010) Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop 34(5):703–707

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dugan SA (2005) Sports-related knee injuries in female athletes: what gives? Am J Phys Med Rehabil 84(2):122–130

    Article  PubMed  Google Scholar 

  15. Faude O, Junge A, Kindermann W et al (2006) Risk factors for injuries in elite female soccer players. Br J Sports Med 40(9):785–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ficek K, Ciezczyk P, Kaczmarczyk M et al (2013) Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J Sci Med Sport 16(5):396–400

    Article  PubMed  Google Scholar 

  17. Ford KR, Myer GD, Hewett TE (2003) Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc 35:1745–1750

    Article  PubMed  Google Scholar 

  18. Ford KR, Myer GD, Toms HE, Hewett TE (2005) Gender differences in the kinematics of unanticipated cutting in young athletes. Med Sci Sports 37:124–129

    Google Scholar 

  19. Gerecke DR, Olson PF, Koch M et al (1997) Complete primary structure of two splice variants of collagen XII, and assignment of alpha 1(XII) collagen (COL12A1), alpha 1(IX) collagen (COL9A1), and alpha 1(XIX) collagen (COL19A1) to human chromosome 6q12-q13. Genomics 41:236–242

    Article  CAS  PubMed  Google Scholar 

  20. Gormeli CA, Gormeli G, Ozturk YB, Ozdemir Z, Kahraman A (2014) The effect of the intercondylar notch width index on anterior cruciate ligament injuries a study on groups with unilateral and bilateral ACL injury. Orthop J Sports Med 2(11):supppl3

    Google Scholar 

  21. Heras Yague P, De La Fuente J (1998) Changes in height and motor performance relative to peak height velocity: a mixed-longitudinal study of Spanish boys and girls. Am J Hum Biol 10:647–660

    Article  Google Scholar 

  22. Hettrich CM, Dunn WR, Reinke EK et al (2013) The rate of subsequent surgery and predictors after anterior cruciate ligament reconstruction: Two- and 6 year follow-up results from a multicenter cohort. Am J Sports Med 41(7):1534–1540

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hewett TE, Myer GD (2011) The mechanistic connection between the trunk, Hip, knee, and anterior cruciate ligament injury. Exerc Sport Sci Rev 39(4):161–166

    PubMed  PubMed Central  Google Scholar 

  24. Hewett TE, Myer GD, Ford KR et al (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33:492–501

    Article  PubMed  Google Scholar 

  25. Hewett TE, Myer GD, Zazulak BT (2008) Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. J Sci Med Sport 11(5):452–459

    Article  PubMed  Google Scholar 

  26. Hewett TE, Stroupe AL, Nance TA, Noyes FR (1996) Plyometric training in female athletes decreased impact forces and increased hamstring torques. Am J Sports Med 24:765–773

    Article  CAS  PubMed  Google Scholar 

  27. Hewett TE, Torg JS, Boden BP (2009) Video analysis of trunk knee motion during Non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med 43:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ireland ML (1996) Anterior cruciate ligament injuries in young female athletes: high risks call for new approaches. Your Patient Fitness 10(5):26–30

    Google Scholar 

  29. Jin H, Hof RJV, Albagha OM, Ralston SH (2009) Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis. Hum Mol Genet 18(15):2729–2738

    Article  CAS  PubMed  Google Scholar 

  30. Keays SL, Keays R, Newcombe PA (2016) Femoral intercondylar notch width size: a comparison between siblings with and without anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 24(3):672–679

    Google Scholar 

  31. Khoschnau S, Melhus H, Jacobson A et al (2008) Type I collagen alpha1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. Am J Sports Med 36(12):2432–2436

    Article  PubMed  Google Scholar 

  32. Kikuchi N, Nakazato K, Min SK, Ueda D, Igawa S (2014) The ACTN3 R577X polymorphism is associated with muscle power in male Japanese athletes. J Strength Cond Res 28(7):1783–1789

    Article  PubMed  Google Scholar 

  33. Komi PV, Klissouras V, Karvinen E (1973) Genetic variation in neuromuscular performance. Int Z Angew Physiol 31(4):289–304

    CAS  PubMed  Google Scholar 

  34. Krosshaug T, Nakamae A, Boden BP (2006) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35(3):359–367

    Article  PubMed  Google Scholar 

  35. Krosshaug T, Bahr R (2005) A model-based image-matching technique for three-dimensional reconstruction of human motion from uncalibrated video sequences. J Biomech 38:919–929

    Article  PubMed  Google Scholar 

  36. Lee BI (2009) Min, KD, Choi, HS, et al. (2009) immunohistochemical study of mechanoreceptors in the tibial remnant of the ruptured anterior cruciate ligament in human knees. Knee Surg Sports Traumatol Arthrosc 17(9):1095–1101

    Article  PubMed  Google Scholar 

  37. Linford CW, Hopkins JT, Schulthies SS et al (2006) Effects of neuromuscular training on the reaction time and electromechanical delay of the peroneus longus muscle. Arch Phys Med Rehabil 87(3):395–401

    Article  PubMed  Google Scholar 

  38. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35:1756–1769

    Article  PubMed  Google Scholar 

  39. Lohmander LS, Stenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152

    Article  CAS  PubMed  Google Scholar 

  40. Loko J, Aule R, Sikkut T et al (2000) Motor performance status in 10 to 17-year-old Estonian girls. Scand J Med Sci Sport 10:109–113

    Article  CAS  Google Scholar 

  41. Mannion S, Mtintsilana A, Posthumus M et al (2014) Genes encoding proteoglycans are associated with the risk of anterior cruciate ligament ruptures. Br J Sports Med 48(22):1640–1646

    Article  PubMed  Google Scholar 

  42. Martin R, Hugentobler J, Myer GD (2011) Is ACL injury all too familial for some patients? Sports Physiother 2:19–24

    Google Scholar 

  43. Mclean SG, Huang X, van den Bogert AJ (2005) Association between lower extremity posture at contact and peak when the tibia moves too far forward implications for ACL injury. Clin Biomech 20(8): 863–870

    Article  Google Scholar 

  44. Merni F, Balboni M, Bargellini S et al (1981) Differences in males and females in joint movement range during growth. Med Sport 15:168–175

    Google Scholar 

  45. Mohammed J, Mohammed H, Abdinejad F, Hamid N (2007) Q-angle: an invaluable parameter for evaluation of anterior knee pain. Arch Iran Med 10(1):24–26

    Google Scholar 

  46. Mokone GG, Schwellnus MP, Noakes TD, Collins M (2006) The COL5A1 gene and Achilles tendon pathology. Scand J Med Sci Sports 16(1):19–26

    Article  CAS  PubMed  Google Scholar 

  47. Myer GD, Faigenbaum AD, Ford KR et al (2011) When to initiate integrative neuromuscular training to reduce sports-related injuries and enhance health in youth? Curr Sports Med Rep 10(3):157–166

    Article  Google Scholar 

  48. Myer GD, Ford KR, Barber KD et al (2009) The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med 19(1):3–8

    Article  PubMed  Google Scholar 

  49. Myer GD, Ford KR, Brent JL, Hewett TE (2006) The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res 20(2):345–353

    PubMed  Google Scholar 

  50. Myer GD, Ford KR, Brent JL, Hewett TE (2007) Differential neuromuscular training effects on ACL injury risk factors in “high-risk” versus “low-risk” athletes. BMC Musculoskelet Disord 8(39):1–7

    Google Scholar 

  51. Myer GD, Ford KR, Khoury J et al (2011) Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br J Sports Med 45:245–252

    Article  PubMed  Google Scholar 

  52. Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2010) Development and validation of a clinic- based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am J Sports Med 20(10):1–10

    Google Scholar 

  53. Myer GD, Ford KR, Palumbo JP, Hewett TE (2005) Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J Strength Cond Res 19(1):51–60

    PubMed  Google Scholar 

  54. Myer GD, Ford KR, Paterno MV et al (2008) The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med 36(6):1073–1080

    Article  PubMed  PubMed Central  Google Scholar 

  55. Myer GD, Ford KR, Stasi SLD et al (2015) High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: Is PFP itself a predictor for subsequent ACL injury? Br J Sports Med 49:118–122

    Article  PubMed  Google Scholar 

  56. Myer GD, Ford KR, Hewett TE (2004) Rationale and Clinical Techniques for Anterior Cruciate Ligament Injury Prevention Among Female Athletes. J Athl Train 39(4):352–364

    PubMed  PubMed Central  Google Scholar 

  57. Myer GD, Heidt RS, Waits C et al (2013) Sex comparison of familial predisposition to anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 22(2):387–391

    Article  Google Scholar 

  58. Myer GD, Lloyd RS, Brent JL, Faigenbaum AD (2013) How young is too young to start training? ACSMs Health Fit J 17(5):14–23

    Article  PubMed  PubMed Central  Google Scholar 

  59. Myer GD, Sugimoto D, Thomas S, Hewett TE (2013) The influence of age on the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: a meta-analysis. Am J Sports Med 41(1):1–25

    Google Scholar 

  60. Myklebust G, Maehlum S, Engebretsen L et al (1997) Registration of cruciate ligament injuries in Norwegian top level team handball. A prospective study involving two seasons. Scand J Med Sci Sports 7:289–292

    Article  CAS  PubMed  Google Scholar 

  61. Nagano Y, Ida H, Akai M, Fukubayashi T (2007) Gender differences in knee kinematics and muscle activity during single limb drop landing. Knee 14:218–223

    Article  PubMed  Google Scholar 

  62. National Institute of Arthritis and Musculoskeletal and Skin Diseases (2013) Handout on health sports injuries. http://www.niams.nih.gov/Health_Info/Sports_Injuries/default.asp#ra_13. Accessed 25 Feb 2015

  63. Nicholas JA, Hirshman EB (1995) The lower extremity and spine in sports medicine, vol 2. Mosby, St. Louis

    Google Scholar 

  64. Øiestad BE, Holm I, Engebretsen L, Risberg MA (2010) The association between radiographic knee osteoarthritis and knee symptoms, function and quality of life 10–15 years after anterior cruciate ligament reconstruction. Br J Sports Med 45(7):583–588

    Article  PubMed  Google Scholar 

  65. Orysiak J, Busko K, Michalski R et al (2014) Relationship between ACTN3 R577X polymorphism and maximal power output in elite Polish athletes. Medicina 50(5):303–308

    Article  PubMed  Google Scholar 

  66. Ostenberg A, Roos H (2000) Injury risk factors in female European football. A prospective study of 123 players during one season. Scand J Med Sci Sports 10:279–285

    Article  CAS  PubMed  Google Scholar 

  67. Otzel DM, Chow JW, Tillman MD (2015) Long-term deficits in quadriceps strength and activation following anterior cruciate ligament reconstruction. Phys Ther Sport 16(1):22–28

    Article  PubMed  Google Scholar 

  68. Pappas E, Carpas F (2012) Lower extremity kinematic asymmetry in males and female athletes performing jump-landing tasks. J Sci Med Sport 15:87–92

    Article  PubMed  Google Scholar 

  69. Paterno MV, Rauh MJ, Schmitt LC et al (2012) Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med 22(2):116–121

    Article  PubMed  PubMed Central  Google Scholar 

  70. Paterno MV, Schmitt LC, Ford KR et al (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38:1968–1978

    Article  PubMed  PubMed Central  Google Scholar 

  71. Posthumus M, September AV, Keegan M et al (2009) Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med 43(5):352–356

    Article  CAS  PubMed  Google Scholar 

  72. Posthumus M, September AV, O’Cuinneagain D et al (2009) The association between the COL12A1 gene and anterior cruciate ligament ruptures. Br J Sports Med 44(16):1160–1165

    Article  PubMed  Google Scholar 

  73. Posthumus M, September AV, O’Cuinneagain D et al (2009) The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med 37(11):2234–2240

    Article  PubMed  Google Scholar 

  74. Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta analysis of the injury of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23(12):1320–1325

    Article  PubMed  Google Scholar 

  75. Pufe T, Petersen W, Tillmann B, Mentlein R (2001) The angiogenic peptide vascular endothelial growth factor is expressed in fetal and ruptured tendons. Virchows Arch 439(4):579–585

    Article  CAS  PubMed  Google Scholar 

  76. Quatman CE, Ford KR, Myer GD et al (2008) The effects of gender and pubertal status on generalized joint laxity in young athletes. J Sci Med Sport 11(3):257–263

    Article  PubMed  Google Scholar 

  77. Rahim M, Gibbon A, Hobbs H et al (2014) The association of genes involved in the angiogenesis-associated signaling pathway with risk of anterior cruciate ligament rupture. J Orthop Res 32(12):1612–1618

    Article  CAS  PubMed  Google Scholar 

  78. Round JM, Jones DA, Honour JW et al (1999) Hormonal factors in the development of differences in strength between boys and girls during adolescence: a longitudinal study. Ann Hum Biol 26(1):49–62

    Article  CAS  PubMed  Google Scholar 

  79. Salmon L, Russell V, Musgrove T et al (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21(8):948–957

    Article  PubMed  Google Scholar 

  80. Santos CG, Pimentel-Coelho PM, Budowle B et al (2015) The heritable path of human physical performance: from single polymorphisms to the “next generation”. Scand J Med Sci Sports (epub)

    Google Scholar 

  81. September AV, Cook J, Handley CJ et al (2009) Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br J Sports Med 43(5):357–365

    Article  CAS  PubMed  Google Scholar 

  82. Shang X, Li Z, Cao X et al (2015) The association between the ACTN3 R577X polymorphism and noncontact acute ankle sprains. J Sports Sci 33(17):1775–1779

    Article  PubMed  Google Scholar 

  83. Shelbourne KD, Davis TI, Klootwyk TE (1998) Relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears: a prospective study. Am J Sports Med 26:402–408

    CAS  PubMed  Google Scholar 

  84. Shultz SJ, Gansneder BM, Sander TC et al (2006) Absolute serum hormone levels predict the magnitude of change in anterior knee laxity across the menstrual cycle. J Orthop Res 24(2):124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shultz SJ, Schmitz RJ, Nguyen AD (2008) Research retreat IV: ACL injuries–the gender bias: April 3-5, 2008 Greensboro. J Athl Train 43:530–531

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sigward S, Powers C (2007) Loading characteristics of females exhibiting excessive valgus movements during cutting. Clin Biomech 22:827–833

    Article  Google Scholar 

  87. Silvers HJ, Mandelbaum BR (2007) Prevention of anterior cruciate ligament injury in the female athlete. Br J Sports Med 41(Suppl I):i52–i59

    Article  PubMed  PubMed Central  Google Scholar 

  88. Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes: a prospective study. Am J Sports Med 21(4):535–539

    Article  CAS  PubMed  Google Scholar 

  89. Stępień-Słodkowska M, Ficek K, Maciejewska-Karłowska A et al (2015) Overrepresentation of the COL3A1 AA genotype in Polish skiers with anterior cruciate ligament injury. Biol Sport 32(2):143–147

    PubMed  PubMed Central  Google Scholar 

  90. Stracciolini A, Casciano R, Friedman HL et al (2014) Pediatric sports injuries: a comparison of males versus females. Am J Sports Med 42(4):965–972

    Article  PubMed  Google Scholar 

  91. Szekely A, Balota DA, Duchek JM et al (2010) Genetic factors of reaction time performance: DRD4 7-repeat allele associated with slower responses. Genes Brain Behav 10(2):129–136

    Article  PubMed  Google Scholar 

  92. Tang Z, Yang L, Xue R et al (2009) Differential expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after a mechanical injury: involvement of the P65 subunit of NF-κB. Wound Repair Regen 17(5):709–716

    Article  PubMed  Google Scholar 

  93. Taylor BT, Waxman JP, Richter SJ, Shultz SJ (2013) Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: a systematic review and meta-analysis. Br J Sports Med 49(2):79–87

    Article  PubMed  Google Scholar 

  94. Tillman MD, Smith KR, Bauer JA et al (2002) Differences in three intercondylar notch geometry indices between males and females: a cadaver study. Knee 9:41–46

    Article  PubMed  Google Scholar 

  95. Uhorchak JM, Scoville CR, Williams GN et al (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31:831–842

    PubMed  Google Scholar 

  96. Vincent B, De Bock K, Ramaekers M et al (2007) ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics 32(1):58–63

    Article  CAS  PubMed  Google Scholar 

  97. Volver A, Viru A, Viru M (2000) Improvement of motor abilities in pubertal girls. J Sports Med Phys Fitness 40(1):17–25

    CAS  PubMed  Google Scholar 

  98. Webster KE, Feller JA, Leigh WB, Richmond AK (2014) Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am J Sports Med 42:641–647

    Article  PubMed  Google Scholar 

  99. Wild CY, Steele JR, Munro BJ (2012) Why do girls sustain more anterior cruciate ligament injuries than boys? A review of the changes in estrogen and musculoskeletal structure and function during puberty. Sports Med 42(9):733–749

    Article  PubMed  Google Scholar 

  100. Winkel D, Matthijs O, Phelps V, Vleeming A (1997) Diagnosis and treatment of the lower extremities: nonoperative orthopaedic medicine and manual therapy. Aspen, Gaithersburg

    Google Scholar 

  101. Wojtys EM, Brower AM (2010) Anterior cruciate ligament injuries in the prepubescent and adolescent athlete: clinical and research considerations. J Athl Train 45:509–512

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wright RW, Magnussen RA, Dunn WR, Spindler KP (2011) Ipsilateral graft and contralateral ACL rupture at five years or more following ACL reconstruction: a systematic review. J Bone Joint Surg Am 93(12):1159–1165

    Article  PubMed  PubMed Central  Google Scholar 

  103. Young K, Samiric T, Feller J, Cook J (2011) Extracellular matrix content of ruptured anterior cruciate ligament tissue. Knee 18(4):242–246

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Myer PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grandhi, R.K., Sugimoto, D., Posthumus, M., Schneider, D., Myer, G.D. (2017). The Dynamic Interplay Between Active and Passive Knee Stability: Implications for Management of the High ACL Injury Risk Athlete. In: Musahl, V., Karlsson, J., Kuroda, R., Zaffagnini, S. (eds) Rotatory Knee Instability. Springer, Cham. https://doi.org/10.1007/978-3-319-32070-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32070-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32069-4

  • Online ISBN: 978-3-319-32070-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics