Skip to main content

In Vivo Biomechanics: Laxity Versus Dynamic Stability

  • Chapter
  • First Online:
Rotatory Knee Instability

Abstract

Musahl et al. described laxity as the passive response of a joint to an externally applied force or torque in biomechanical terms [60]. Thus, laxity tests for evaluating knee injury assess the passive limits of motion in a particular direction or plane. Through comprehensive laxity testing, it is possible to describe the range of a passive envelope of motion that the joint can achieve within the limits of the low forces typically employed for such testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abebe ES, Utturkar GM, Taylor DC, Spritzer CE, Kim JP, Moorman CT, Garrett WE, DeFrate LE (2011) The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction. J Biomech 44(5):924–929. doi:10.1016/j.jbiomech.2010.11.028, S0021-9290(10)00654-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderst W, Zauel R, Bishop J, Demps E, Tashman S (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31(1):10–16. doi:10.1016/j.medengphy.2008.03.003, S1350-4533(08)00044-1

    Article  PubMed  Google Scholar 

  3. Anderst WJ, Tashman S (2009) The association between velocity of the center of closest proximity on subchondral bones and osteoarthritis progression. J Orthop Res 27(1):71–77. doi:10.1002/jor.20702

    Article  PubMed  PubMed Central  Google Scholar 

  4. Andriacchi TP, Briant PL, Bevill SL, Koo S (2006) Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res 442:39–44

    Article  PubMed  Google Scholar 

  5. Andriacchi TP, Dyrby CO (2005) Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech 38(2):293–298. doi:10.1016/j.jbiomech.2004.02.010

    Article  PubMed  Google Scholar 

  6. Andriacchi TP, Koo S, Scanlan SF (2009) Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am 91(Suppl 1):95–101. doi:10.2106/jbjs.h.01408

    Article  PubMed  PubMed Central  Google Scholar 

  7. Andriacchi TP, Mundermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S (2004) A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32(3):447–457

    Article  PubMed  Google Scholar 

  8. Arnold JA, Coker TP, Heaton LM, Park JP, Harris WD (1979) Natural history of anterior cruciate tears. Am J Sports Med 7(6):305–313

    Article  CAS  PubMed  Google Scholar 

  9. Balasch H, Schiller M, Friebel H, Hoffmann F (1999) Evaluation of anterior knee joint instability with the Rolimeter. A test in comparison with manual assessment and measuring with the KT-1000 arthrometer. Knee Surg Sports Traumatol Arthrosc 7(4):204–208

    Article  CAS  PubMed  Google Scholar 

  10. Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W (1990) Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res 255:204–214

    PubMed  Google Scholar 

  11. Carter DR, Beaupre GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ (2004) The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res (427 Suppl):S69–S77. doi:00003086-200410001-00014 [pii]

    Google Scholar 

  12. Chaudhari AM, Briant PL, Bevill SL, Koo S, Andriacchi TP (2008) Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc 40(2):215–222. doi:10.1249/mss.0b013e31815cbb0e

    Article  PubMed  Google Scholar 

  13. Cross MJ, Wootton JR, Bokor DJ, Sorrenti SJ (1993) Acute repair of injury to the anterior cruciate ligament. A long-term followup. Am J Sports Med 21(1):128–131

    Article  CAS  PubMed  Google Scholar 

  14. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67(5):720–726

    CAS  PubMed  Google Scholar 

  15. Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13(6):401–407

    Article  CAS  PubMed  Google Scholar 

  16. Dortmans L, Jans H, Sauren A, Huson A (1991) Nonlinear dynamic behavior of the human knee joint--Part II: Time-domain analyses: effects of structural damage in postmortem experiments. J Biomech Eng 113(4):392–396

    Article  CAS  PubMed  Google Scholar 

  17. Espregueira-Mendes J, Pereira H, Sevivas N, Passos C, Vasconcelos JC, Monteiro A, Oliveira JM, Reis RL (2012) Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc 20(4):671–678. doi:10.1007/s00167-012-1914-9

    Article  PubMed  Google Scholar 

  18. Farrokhi S, Voycheck CA, Klatt BA, Gustafson JA, Tashman S, Fitzgerald GK (2014) Altered tibiofemoral joint contact mechanics and kinematics in patients with knee osteoarthritis and episodic complaints of joint instability. Clin Biomech (Bristol, Avon) 29(6):629–635. doi:10.1016/j.clinbiomech.2014.04.014

    Article  Google Scholar 

  19. Feagin JA Jr, Curl WW (1976) Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med 4(3):95–100

    Article  PubMed  Google Scholar 

  20. Fetto JF, Marshall JL (1979) Injury to the anterior cruciate ligament producing the pivot-shift sign. J Bone Joint Surg Am 61(5):710–714

    CAS  PubMed  Google Scholar 

  21. Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50

    PubMed  Google Scholar 

  22. Ganko A, Engebretsen L, Ozer H (2000) The rolimeter: a new arthrometer compared with the KT-1000. Knee Surg Sports Traumatol Arthrosc 8(1):36–39. doi:10.1007/s001670050008

    Article  CAS  PubMed  Google Scholar 

  23. Gao B, Zheng NN (2008) Investigation of soft tissue movement during level walking: translations and rotations of skin markers. J Biomech 41(15):3189–3195. doi:10.1016/j.jbiomech.2008.08.028, S0021-9290(08)00437-5 [pii]

    Article  PubMed  Google Scholar 

  24. Garling EH, Kaptein BL, Mertens B, Barendregt W, Veeger HE, Nelissen RG, Valstar ER (2007) Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. J Biomech 40(Suppl 1):S18–S24. doi:S0021-9290(07)00108-X [pii]

    Article  PubMed  Google Scholar 

  25. Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31(1):75–79

    PubMed  Google Scholar 

  26. Goyal K, Tashman S, Wang JH, Li K, Zhang X, Harner C (2012) In vivo analysis of the isolated posterior cruciate ligament-deficient knee during functional activities. Am J Sports Med 40(4):777–785. doi:10.1177/0363546511435783

    Article  PubMed  Google Scholar 

  27. Harter RA, Osternig LR, Singer KM, James SL, Larson RL, Jones DC (1988) Long-term evaluation of knee stability and function following surgical reconstruction for anterior cruciate ligament insufficiency. Am J Sports Med 16(5):434–443

    Article  CAS  PubMed  Google Scholar 

  28. Holden JP, Chou G, Stanhope SJ (1997) Changes in knee joint function over a wide range of walking speeds. Clin Biomech (Bristol, Avon) 12(6):375–382

    Article  Google Scholar 

  29. Hong L, Li X, Zhang H, Liu X, Zhang J, Shen JW, Feng H (2012) Anterior cruciate ligament reconstruction with remnant preservation: a prospective, randomized controlled study. Am J Sports Med 40(12):2747–2755. doi:10.1177/0363546512461481

    Article  PubMed  Google Scholar 

  30. Hoshino Y, Araujo P, Ahlden M, Samuelsson K, Muller B, Hofbauer M, Wolf MR, Irrgang JJ, Fu FH, Musahl V (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 21(4):975–980. doi:10.1007/s00167-013-2396-0

    Article  PubMed  Google Scholar 

  31. Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2012) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc 20(7):1323–1330. doi:10.1007/s00167-011-1643-5

    Article  PubMed  Google Scholar 

  32. Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098–1104, 0363546507299447

    Article  PubMed  Google Scholar 

  33. Hoshino Y, Wang JH, Lorenz S, Fu FH, Tashman S (2012) The effect of distal femur bony morphology on in vivo knee translational and rotational kinematics. Knee Surg Sports Traumatol Arthrosc 20(7):1331–1338. doi:10.1007/s00167-011-1661-3

    Article  PubMed  Google Scholar 

  34. Hosseini A, Gill TJ, Li G (2009) In vivo anterior cruciate ligament elongation in response to axial tibial loads. J Orthop Sci 14(3):298–306. doi:10.1007/s00776-009-1325-z

    Article  PubMed  PubMed Central  Google Scholar 

  35. Irrgang JJ, Tashman S, Moore C, Fu FH (2012) Challenge accepted: description of an ongoing NIH-funded randomized clinical trial to compare anatomic single-bundle versus anatomic double-bundle ACL reconstruction. Arthroscopy 28(6):745–747. doi:10.1016/j.arthro.2012.04.003; author reply 747–748

    Article  PubMed  Google Scholar 

  36. Janssen RP, du Mee AW, van Valkenburg J, Sala HA, Tseng CM (2013) Anterior cruciate ligament reconstruction with 4-strand hamstring autograft and accelerated rehabilitation: a 10-year prospective study on clinical results, knee osteoarthritis and its predictors. Knee Surg Sports Traumatol Arthrosc 21(9):1977–1988. doi:10.1007/s00167-012-2234-9

    Article  PubMed  Google Scholar 

  37. Johnson DL, Urban WP Jr, Caborn DN, Vanarthos WJ, Carlson CS (1998) Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med 26(3):409–414

    CAS  PubMed  Google Scholar 

  38. Jonsson H, Riklund-Ahlstrom K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5-9 years after surgery. Acta Orthop Scand 75(5):594–599. doi:10.1080/00016470410001484

    Article  PubMed  Google Scholar 

  39. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32(3):629–634

    Article  PubMed  Google Scholar 

  40. Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, Kurosaka M (2012) Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med 40(1):91–99. doi:10.1177/0363546511423634, 0363546511423634

    Article  PubMed  Google Scholar 

  41. Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229–236

    Article  PubMed  Google Scholar 

  42. Li G, Van de Velde SK, Bingham JT (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41(7):1616–1622. doi:10.1016/j.jbiomech.2008.01.034, S0021-9290(08)00083-3

  43. Lipke JM, Janecki CJ, Nelson CL, McLeod P, Thompson C, Thompson J, Haynes DW (1981) The role of incompetence of the anterior cruciate and lateral ligaments in anterolateral and anteromedial instability. A biomechanical study of cadaver knees. J Bone Joint Surg Am 63(6):954–960

    CAS  PubMed  Google Scholar 

  44. Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20(4):713–717. doi:10.1007/s00167-011-1865-6

    Article  PubMed  Google Scholar 

  45. Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2012) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin 15(12):1323–1328. doi:10.1080/10255842.2011.591788

    Article  PubMed  Google Scholar 

  46. Losee RE, Johnson TR, Southwick WO (1978) Anterior subluxation of the lateral tibial plateau. A diagnostic test and operative repair. J Bone Joint Surg Am 60(8):1015–1030

    CAS  PubMed  Google Scholar 

  47. Ma Y, Thorhauer E, Tashman S (2014) Relationships between static laxity and dynamic knee function after ACL reconstruction. Paper presented at the 60th Orthopaedic Research Society Annual Meeting, New Orleans, 15–18 Mar 2014

    Google Scholar 

  48. Manal K, McClay Davis I, Galinat B, Stanhope S (2003) The accuracy of estimating proximal tibial translation during natural cadence walking: bone vs. skin mounted targets. Clin Biomech (Bristol, Avon) 18(2):126–131

    Article  CAS  Google Scholar 

  49. Markolf KL, Park S, Jackson SR, McAllister DR (2008) Simulated pivot-shift testing with single and double-bundle anterior cruciate ligament reconstructions. J Bone Joint Surg Am 90(8):1681–1689. doi:10.2106/jbjs.g.01272

    Article  PubMed  Google Scholar 

  50. Matsushita T, Oka S, Nagamune K, Matsumoto T, Nishizawa Y, Hoshino Y, Kubo S, Kurosaka M, Kuroda R (2013) Differences in Knee Kinematics Between Awake and Anesthetized Patients During the Lachman and Pivot-Shift Tests for Anterior Cruciate Ligament Deficiency. Orthop J Sports Med 1(1):1–6

    Article  Google Scholar 

  51. McLean SG, Oh YK, Palmer ML, Lucey SM, Lucarelli DG, Ashton-Miller JA, Wojtys EM (2011) The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Joint Surg Am 93(14):1310–1317. doi:10.2106/jbjs.j.00259

    Article  PubMed  Google Scholar 

  52. McQuade KJ, Sidles JA, Larson RV (1989) Reliability of the Genucom Knee Analysis System. A pilot study. Clin Orthop Relat Res 245:216–219

    PubMed  Google Scholar 

  53. Miranda DL, Schwartz JB, Loomis AC, Brainerd EL, Fleming BC, Crisco JJ (2011) Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques. J Biomech Eng 133(12):121002. doi:10.1115/1.4005471

    Article  PubMed  PubMed Central  Google Scholar 

  54. Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61(7):617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Monaco E, Labianca L, Conteduca F, De Carli A, Ferretti A (2007) Double bundle or single bundle plus extraarticular tenodesis in ACL reconstruction? A CAOS study. Knee Surg Sports Traumatol Arthrosc 15(10):1168–1174. doi:10.1007/s00167-007-0368-y

    Article  CAS  PubMed  Google Scholar 

  56. Moro-oka TA, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA (2008) Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res 26(4):428–434. doi:10.1002/jor.20488

    Article  PubMed  Google Scholar 

  57. Musahl V, Ayeni OR, Citak M, Irrgang JJ, Pearle AD, Wickiewicz TL (2010) The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol Arthrosc 18(9):1232–1238. doi:10.1007/s00167-010-1129-x

    Article  PubMed  Google Scholar 

  58. Musahl V, Burkart A, Debski RE, Van Scyoc A, Fu FH, Woo SL (2002) Accuracy of anterior cruciate ligament tunnel placement with an active robotic system: a cadaveric study. Arthroscopy 18(9):968–973. doi:a0180968 [pii]

    Article  PubMed  Google Scholar 

  59. Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38(8):1591–1597. doi:10.1177/0363546510364402

    Article  PubMed  Google Scholar 

  60. Musahl V, Hoshino Y, Becker R, Karlsson J (2012) Rotatory knee laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc 20(4):601–602. doi:10.1007/s00167-011-1844-y

    Article  PubMed  Google Scholar 

  61. Noyes FR, Bassett RW, Grood ES, Butler DL (1980) Arthroscopy in acute traumatic hemarthrosis of the knee. Incidence of anterior cruciate tears and other injuries. J Bone Joint Surg Am 62(5):687–695, 757

    CAS  PubMed  Google Scholar 

  62. Ohashi B, Lopomo N, Zaffagnini S, Hoshino Y, Kuroda R, Samuelsson K, Irrgang J, Musahl V (2014) Quantitative measurement of a standardized Pivot-shift: comparison between the awake and the examination under anesthesia in patients with acute ACL injury. Proc Orthop Res Soc 60:1671

    Google Scholar 

  63. Oliver JH, Coughlin LP (1987) Objective knee evaluation using the Genucom Knee Analysis System. Clinical implications. Am J Sports Med 15(6):571–578

    Article  CAS  PubMed  Google Scholar 

  64. Pappas E, Zampeli F, Xergia SA, Georgoulis AD (2013) Lessons learned from the last 20 years of ACL-related in vivo-biomechanics research of the knee joint. Knee Surg Sports Traumatol Arthrosc 21(4):755–766. doi:10.1007/s00167-012-1955-0

    Article  PubMed  Google Scholar 

  65. Seto JL, Orofino AS, Morrissey MC, Medeiros JM, Mason WJ (1988) Assessment of quadriceps/hamstring strength, knee ligament stability, functional and sports activity levels five years after anterior cruciate ligament reconstruction. Am J Sports Med 16(2):170–180

    Article  CAS  PubMed  Google Scholar 

  66. Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, Cooke J, Gibbons G, Hutchinson N, Schurman DJ (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13(6):824–831. doi:10.1002/jor.1100130604

    Article  CAS  PubMed  Google Scholar 

  67. Snyder-Mackler L, Fitzgerald GK, Bartolozzi AR 3rd, Ciccotti MG (1997) The relationship between passive joint laxity and functional outcome after anterior cruciate ligament injury. Am J Sports Med 25(2):191–195

    Article  CAS  PubMed  Google Scholar 

  68. Sonesson S, Kvist J (2015) Dynamic and static tibial translation in patients with anterior cruciate ligament deficiency initially treated with a structured rehabilitation protocol. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3714-5

    PubMed  Google Scholar 

  69. Tashman S (2008) Comments on “validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion”. J Biomech 41(15):3290–3291. doi:10.1016/j.jbiomech.2008.07.038; author reply 3292–3293

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tashman S, Araki D (2013) Effects of anterior cruciate ligament reconstruction on in vivo, dynamic knee function. Clin Sports Med 32(1):47–59. doi:10.1016/j.csm.2012.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983

    Article  PubMed  Google Scholar 

  72. Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73. doi:10.1097/BLO.0b013e31802bab3e

    Article  PubMed  Google Scholar 

  73. Torg JS, Conrad W, Kalen V (1976) Clinical diagnosis of anterior cruciate ligament instability in the athlete. Am J Sports Med 4(2):84–93

    Article  CAS  PubMed  Google Scholar 

  74. van Dommelen JA, Jolandan MM, Ivarsson BJ, Millington SA, Raut M, Kerrigan JR, Crandall JR, Diduch DR (2006) Nonlinear viscoelastic behavior of human knee ligaments subjected to complex loading histories. Ann Biomed Eng 34(6):1008–1018. doi:10.1007/s10439-006-9100-1

    Article  PubMed  Google Scholar 

  75. van Eck CF, Loopik M, van den Bekerom MP, Fu FH, Kerkhoffs GM (2013) Methods to diagnose acute anterior cruciate ligament rupture: a meta-analysis of instrumented knee laxity tests. Knee Surg Sports Traumatol Arthrosc 21(9):1989–1997. doi:10.1007/s00167-012-2246-5

    Article  PubMed  Google Scholar 

  76. van Eck CF, van den Bekerom MP, Fu FH, Poolman RW, Kerkhoffs GM (2013) Methods to diagnose acute anterior cruciate ligament rupture: a meta-analysis of physical examinations with and without anaesthesia. Knee Surg Sports Traumatol Arthrosc 21(8):1895–1903. doi:10.1007/s00167-012-2250-9

    Article  PubMed  Google Scholar 

  77. Wu JL, Hosseini A, Kozanek M, Gadikota HR, Gill TJ, Li G (2010) Kinematics of the anterior cruciate ligament during gait. Am J Sports Med 38(7):1475–1482. doi:10.1177/0363546510364240, 0363546510364240

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666

    PubMed  Google Scholar 

  79. Yang JH, Yoon JR, Jeong HI, Hwang DH, Woo SJ, Kwon JH, Nha KW (2012) Second-look arthroscopic assessment of arthroscopic single-bundle posterior cruciate ligament reconstruction: comparison of mixed graft versus achilles tendon allograft. Am J Sports Med 40(9):2052–2060. doi:10.1177/0363546512454532

    Article  PubMed  Google Scholar 

  80. Zantop T, Schumacher T, Diermann N, Schanz S, Raschke MJ, Petersen W (2007) Anterolateral rotational knee instability: role of posterolateral structures. Winner of the AGA-DonJoy Award 2006. Arch Orthop Trauma Surg 127(9):743–752. doi:10.1007/s00402-006-0241-3

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Tashman PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nishizawa, Y., Tashman, S. (2017). In Vivo Biomechanics: Laxity Versus Dynamic Stability. In: Musahl, V., Karlsson, J., Kuroda, R., Zaffagnini, S. (eds) Rotatory Knee Instability. Springer, Cham. https://doi.org/10.1007/978-3-319-32070-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32070-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32069-4

  • Online ISBN: 978-3-319-32070-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics