Quantifying the Forces During the Pivot Shift Test

  • Yuichi HoshinoEmail author


The forces needed to elicit the pivot shift remain largely unknown, especially from a quantitative perspective. Previous research has demonstrated that there are three general components of external forces necessary to elicit the pivot shift test: (1) valgus stress, (2) axial compressive stress, and (3) internal rotational stress during the pivot shift test. At first, valgus stress is a requisite for the pivot shift test. Axial rotational stress should not be consistent in order to maximize the pivot shift movement. The dislocation of the lateral compartment is intensified by applying internal rotational stress, whereas the reduction movement is enhanced by applying external rotational stress. Changing the rotational force from internal to external depending on the phase of the pivot shift is preferable to highlight the pivot shift phenomenon. Also, another key force necessary to elicit a pivot shift is an axial compressive force. The examiner must carefully increase axial compression until the knee nears 30° of flexion, which is where the sudden reduction begins to happen. However, the exact amount of the force during the pivot shift test remains unknown. Investigation of the applied force to the knee during the pivot shift test is warranted to improve clinical usability of the pivot shift test and to contribute to the future development of an automated pivot shift test.


Pivot Shift Pivot Shift Test Anterior Tibial Translation Iliotibial Band Valgus Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bull AMJ, Amis AA (1998) The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee 5(3):141–158CrossRefGoogle Scholar
  2. 2.
    Bull AM, Andersen HN, Basso O et al (1999) Incidence and mechanism of the pivot shift. An in vitro study. Clin Orthop Relat Res 363:219–231CrossRefPubMedGoogle Scholar
  3. 3.
    Bull AM, Earnshaw PH, Smith A et al (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84(7):1075–1081CrossRefPubMedGoogle Scholar
  4. 4.
    Citak M, O’Loughlin PF, Citak M et al (2012) Influence of the valgus force during knee flexion in neutral rotation. Knee Surg Sports Traumatol Arthrosc 20(8):1571–1574CrossRefPubMedGoogle Scholar
  5. 5.
    Fujie H, Mabuchi K, Woo SL-Y et al (1993) The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng 115:211–217CrossRefPubMedGoogle Scholar
  6. 6.
    Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50PubMedGoogle Scholar
  7. 7.
    Giffin JR, Vogrin TM, Zantop T et al (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382CrossRefPubMedGoogle Scholar
  8. 8.
    Hashemi J, Breighner R, Chandrashekar N et al (2011) Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury. J Biomech 44(4):577–585CrossRefPubMedGoogle Scholar
  9. 9.
    Herbort M, Lenschow S, Fu FH et al (2010) ACL mismatch reconstructions: influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics. Knee Surg Sports Traumatol Arthrosc 18(11):1551–1558CrossRefPubMedGoogle Scholar
  10. 10.
    Herbort M, Tecklenburg K, Zantop T et al (2013) Single-bundle anterior cruciate ligament reconstruction: a biomechanical cadaveric study of a rectangular quadriceps and bone--patellar tendon--bone graft configuration versus a round hamstring graft. Arthroscopy 29(12):1981–1990CrossRefPubMedGoogle Scholar
  11. 11.
    Hewett TE, Torg JS, Boden BP (2009) Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med 43(6):417–422CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hoshino Y, Kuroda R, Nagamune K et al (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35(7):1098–1104CrossRefPubMedGoogle Scholar
  13. 13.
    Hoshino Y, Araujo P, Irrgang JJ et al (2012) An image analysis method to quantify the lateral pivot shift test. Knee Surg Sports Traumatol Arthrosc 20(4):703–707CrossRefPubMedGoogle Scholar
  14. 14.
    Hoshino Y, Kuroda R, Nagamune K et al (2012) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc 20(7):1323–1330CrossRefPubMedGoogle Scholar
  15. 15.
    Hoshino Y, Araujo P, Ahlden M et al (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 21(4):975–980CrossRefPubMedGoogle Scholar
  16. 16.
    Ishibashi Y, Tsuda E, Yamamoto Y et al (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy 25(5):488–495CrossRefPubMedGoogle Scholar
  17. 17.
    Kanamori A, Woo SL, Ma CB et al (2000) The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 16(6):633–639CrossRefPubMedGoogle Scholar
  18. 18.
    Kanamori A, Zeminski J, Rudy TW et al (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 18(4):394–398CrossRefPubMedGoogle Scholar
  19. 19.
    Koga H, Nakamae A, Shima Y et al (2010) Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med 38(11):2218–2225CrossRefPubMedGoogle Scholar
  20. 20.
    Kopf S, Kauert R, Halfpaap J et al (2012) A new quantitative method for pivot shift grading. Knee Surg Sports Traumatol Arthrosc 20(4):718–723CrossRefPubMedGoogle Scholar
  21. 21.
    Kuroda R, Hoshino Y, Kubo S et al (2012) Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med 40(1):91–99CrossRefPubMedGoogle Scholar
  22. 22.
    Labbe DR, de Guise JA, Mezghani N et al (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43(16):3080–3084CrossRefPubMedGoogle Scholar
  23. 23.
    Lane CG, Warren RF, Stanford FC et al (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16(5):487–492CrossRefPubMedGoogle Scholar
  24. 24.
    Loh JC, Fukuda Y, Tsuda E, et al (2003) Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. 2002 Richard O’Connor Award paper. Arthroscopy 19(3):297–304Google Scholar
  25. 25.
    Lopomo N, Zaffagnini S, Bignozzi S et al (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28(2):164–169PubMedGoogle Scholar
  26. 26.
    Lopomo N, Signorelli C, Bonanzinga T et al (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20(4):713–717CrossRefPubMedGoogle Scholar
  27. 27.
    Losee RE (1983) Concepts of the pivot shift. Clin Orthop Relat Res 172:45–51PubMedGoogle Scholar
  28. 28.
    Markolf KL, Park S, Jackson SR et al (2008) Simulated pivot-shift testing with single and double-bundle anterior cruciate ligament reconstructions. J Bone Joint Surg Am 90(8):1681–1689CrossRefPubMedGoogle Scholar
  29. 29.
    Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg Br 72(5):816–821PubMedGoogle Scholar
  30. 30.
    Musahl V, Plakseychuk A, VanScyoc A et al (2005) Varying femoral tunnels between the anatomical footprint and isometric positions: effect on kinematics of the anterior cruciate ligament-reconstructed knee. Am J Sports Med 33(5):712–718CrossRefPubMedGoogle Scholar
  31. 31.
    Musahl V, Voos J, O’Loughlin PF et al (2010) Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc 18(9):1208–1213CrossRefPubMedGoogle Scholar
  32. 32.
    Musahl V, Hoshino Y, Ahlden M et al (2012) The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20(4):724–731CrossRefPubMedGoogle Scholar
  33. 33.
    Noyes FR, Grood ES, Cummings JF et al (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19(2):148–155CrossRefPubMedGoogle Scholar
  34. 34.
    Quatman CE, Hewett TE (2009) The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br J Sports Med 43(5):328–335CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Slocum DB, James SL, Larson RL et al (1976) Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res 118:63–69PubMedGoogle Scholar
  36. 36.
    Woo SL, Chan SS, Yamaji T (1997) Biomechanics of knee ligament healing, repair and reconstruction. J Biomech 30(5):431–439CrossRefPubMedGoogle Scholar
  37. 37.
    Woo SL, Fisher MB (2009) Evaluation of knee stability with use of a robotic system. J Bone Joint Surg Am 91(Suppl 1):78–84CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yagi M, Wong EK, Kanamori A et al (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30(5):660–666PubMedGoogle Scholar
  39. 39.
    Yamamoto Y, Hsu WH, Woo SL et al (2004) Knee stability and graft function after anterior cruciate ligament reconstruction: a comparison of a lateral and an anatomical femoral tunnel placement. Am J Sports Med 32(8):1825–1832CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryKobe Kaisei HospitalKobeJapan

Personalised recommendations