Advertisement

Use of Inertial Sensors for Quantifying the Pivot Shift Maneuver

  • Per Henrik BorgstromEmail author
  • Edward Cheung
  • Keith L. Markolf
  • David R. McAllister
  • William J. Kaiser
  • Frank A. Petrigliano
Chapter
  • 1.1k Downloads

Abstract

There is emerging interest in the use of inertial sensors such as gyroscopes and accelerometers in evaluating rotational instability of the knee. In particular, a number of groups have recently investigated the use of microelectromechanical systems (MEMS) sensors in instrumenting the pivot shift examination. Using such sensors, it has been demonstrated that an injured knee subjected to the exam tends to undergo larger accelerations than its normal counterpart. Further, higher pivot shift scores (Benjaminse et al. Orthop Phys Ther 36(5):267–288, 2006; Berruto et al. Knee Surg Sports Traumatol Arthrosc 21(4):981–985, 2013) are typically associated with elevated accelerations. Diagnosis of ACL rupture or other quantifications of ACL state based on thresholding of such sensor data does not provide sufficient accuracy for clinical use. However, application of advanced classification techniques to such data has yielded large improvements in diagnostic accuracy.

References

  1. 1.
    Araujo PH, Ahlden M, Hoshino Y, Muller B, Moloney G, Fu FH, Musahl V (2012) Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc 20(4):692–697CrossRefPubMedGoogle Scholar
  2. 2.
    Benjaminse A, Gokeler A, van der Schans CP (2006) Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Phys Ther 36(5):267–288CrossRefGoogle Scholar
  3. 3.
    Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W (2013) Is triaxial accelerometer reliable in the evaluation and grading of knee pivot shift phenomenon? Knee Surg Sports Traumatol Arthrosc 21(4):981–985CrossRefPubMedGoogle Scholar
  4. 4.
    Bignozzi S, Zaffagnini S, Lopomo N, Fu FH, Irrgang JJ, Marcacci M (2010) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18(1):37–42CrossRefPubMedGoogle Scholar
  5. 5.
    Borgstrom PH, Markolf KL, Wang Y, Xu X, Yang PR, Joshi NB, Yeranosian MG, Petrigliano FA, Hame SL, Kaiser WJ, McAllister DR (2015) Use of inertial sensors to predict pivot-shift grade and diagnose an ACL injury during preoperative testing. Am J Sports Med 43(4):857–864. doi: 10.1177/0363546514565090, Epub 2015 Jan 22CrossRefPubMedGoogle Scholar
  6. 6.
    Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 62(2):259–270PubMedGoogle Scholar
  7. 7.
    Galway RD, Beaupre A, Macintosh DL (1972) Pivot shift: a clinical sign of symptomatic anterior cruciate insufficiency. J Bone Joint Surg Br 54:763–764Google Scholar
  8. 8.
    Hefti F, Muller W, Jakob RP (1993) Staubli HU evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234. 13CrossRefPubMedGoogle Scholar
  9. 9.
    Hirschman HP, Danial D, Miyasaka K (1990) The fate of unoperated knee ligament injuries. In: Daniel D (ed) Knee ligaments structure function. Injury and repair. Raven, New York, pp 481–503Google Scholar
  10. 10.
    Invensense MPU 9250 Datasheet. http://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/. Accessed 31 July 2015
  11. 11.
    Joliffe IT (2002) Principal component analysis. Springer series in statistics. 2nd edn. Springer-Verlag, New YorkGoogle Scholar
  12. 12.
    Jonsson H, Riklund-Ahlström K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75(5):594–599CrossRefPubMedGoogle Scholar
  13. 13.
    Kocher MS, Steadman JR, Briggs KK et al (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634CrossRefPubMedGoogle Scholar
  14. 14.
    Labbe D, de Guise J, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43:3080–3084CrossRefPubMedGoogle Scholar
  15. 15.
    Labbe D, de Guise J, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2011) Objective grading of the pivot shift phenomenon using a support vector machine approach. J Biomech 44:1–5CrossRefPubMedGoogle Scholar
  16. 16.
    Labbe D, Li D, Grimard G, de Guise J, Hagemeister N (2015) Quantitative pivot shift assessment using combined inertial and magnetic sensing. Knee Surg Sports Traumatol Arthrosc 23(8):2330–2338CrossRefPubMedGoogle Scholar
  17. 17.
    Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229–236CrossRefPubMedGoogle Scholar
  18. 18.
    Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop ResGoogle Scholar
  19. 19.
    Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2012) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin 15(12):1323–1328CrossRefPubMedGoogle Scholar
  20. 20.
    Losee RE (1983) Concepts of the pivot shift. Clin Orthop Relat Res 172:45–51PubMedGoogle Scholar
  21. 21.
    Musahl V, Hoshino Y, Ahlden M et al (2012) The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20(4):724–731CrossRefPubMedGoogle Scholar
  22. 22.
    Petermann J, Trus P, Kunneke M, Gotzen L (1996) The pivot-shift test in relation to hip position and lower leg rotation. A clinical analysis. Unfallchirurg 99(3):191–195PubMedGoogle Scholar
  23. 23.
    Prins M (2006) The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother 52(1):66CrossRefPubMedGoogle Scholar
  24. 24.
    Suykens JA, Vandenwalle J (1999) Least squares support vector machine classifiers. Neural Proc Letters 9(3):293–300CrossRefGoogle Scholar
  25. 25.
    Zhu R, Sun D, Zhou Z, Wang D (2007) A linear fusion algorithm for attitude determination using low cost MEMS-based sensors. Measurement 40(3):322–328CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Per Henrik Borgstrom
    • 1
    Email author
  • Edward Cheung
    • 2
  • Keith L. Markolf
    • 2
  • David R. McAllister
    • 2
  • William J. Kaiser
    • 3
  • Frank A. Petrigliano
    • 2
  1. 1.Wireless Health InstituteUniversity of California at Los AngelesLos AngelesUSA
  2. 2.Department of Orthopedic SurgeryUniversity of California at Los AngelesLos AngelesUSA
  3. 3.Wireless Health InstituteUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations