Quantifying the “Feel” of the Pivot Shift

  • Nicola LopomoEmail author
  • Stefano Zaffagnini


This chapter aims to analyze the state-of-the-art technology in quantifying the “feel” related to the pivot shift phenomenon. Therefore, the presented concepts are used to support this “feel” rationale, which is mainly associated with the sudden reduction that happens after joint subluxation. All of the presented methods are related to the possibility of measuring the “clunk” that can be felt within the knee joint associated to anterior cruciate ligament (ACL) injury. Scientific literature has reported the use of specific parameters – such as velocity and acceleration – that are related to the dynamic nature of the pivot shift phenomenon and also introduced the use of different devices and systems that are able to directly measure both velocity and acceleration. Due to the possibility of being used in a clinical setting, inertial sensors are playing an increasing role in this context.


Pivot shift Acceleration Velocity Knee reduction Inertial sensors “Feel” 


  1. 1.
    Ahldén M, Araujo P, Hoshino Y, Samuelsson K, Middleton KK, Nagamune K, Karlsson J, Musahl V (2012) Clinical grading of the pivot shift test correlates best with tibial acceleration. Knee Surg Sport Traumatol Arthrosc 20:708–712CrossRefGoogle Scholar
  2. 2.
    Ahldén M, Hoshino Y, Samuelsson K, Araujo P, Musahl V, Karlsson J (2012) Dynamic knee laxity measurement devices. Knee Surg Sport Traumatol Arthrosc 20:621–632CrossRefGoogle Scholar
  3. 3.
    Amis AA, Bull AMJ, Lie DTT (2005) Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Oper Tech Orthop 15:29–35CrossRefGoogle Scholar
  4. 4.
    Araujo PH, Ahlden M, Hoshino Y, Muller B, Moloney G, Fu FH, Musahl V (2012) Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sport Traumatol Arthrosc 20:692–697CrossRefGoogle Scholar
  5. 5.
    Asai S, Maeyama A, Hoshino Y, Goto B, Celentano U, Moriyama S, Smolinski P, Fu FH (2014) A comparison of dynamic rotational knee instability between anatomic single-bundle and over-the-top anterior cruciate ligament reconstruction using triaxial accelerometry. Knee Surg Sport Traumatol Arthrosc 22:972–978CrossRefGoogle Scholar
  6. 6.
    Bach BR, Warren RF, Wickiewicz TL (1988) The pivot shift phenomenon: Results and description of a modified clinical test for anterior cruciate ligament insufficiency. Am J Sports Med 16:571–576CrossRefPubMedGoogle Scholar
  7. 7.
    Benjaminse A, Gokeler A, van der Schans CP (2006) Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther 36:267–288CrossRefPubMedGoogle Scholar
  8. 8.
    Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W (2013) Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sport Traumatol Arthrosc 21:981–985CrossRefGoogle Scholar
  9. 9.
    Borgstrom PH, Markolf KL, Foster B, Petrigliano FA, McAllister DR (2013) Use of a gyroscope sensor to quantify tibial motions during a pivot shift test. Knee Surg Sport Traumatol Arthrosc 22:2064–2069CrossRefGoogle Scholar
  10. 10.
    Borgstrom PH, Markolf KL, Wang Y, Xu X, Yang PR, Joshi NB, Yeranosian MG, Petrigliano FA, Hame SL, Kaiser WJ, McAllister DR (2015) Use of inertial sensors to predict pivot-shift grade and diagnose an ACL injury during preoperative testing. Am J Sports Med 43(4):857–864CrossRefPubMedGoogle Scholar
  11. 11.
    Bull AM, Amis AA (1998) Knee joint motion: description and measurement. Proc Inst Mech Eng H 212:357–372CrossRefPubMedGoogle Scholar
  12. 12.
    Bull AM, Andersen HN, Basso O, Targett J, Amis AA (1999) Incidence and mechanism of the pivot shift. An in vitro study. Clin Orthop Relat Res 363:219–231CrossRefPubMedGoogle Scholar
  13. 13.
    Bull AMJ, Earnshaw PH, Smith A, Katchburian MV, Hassan ANA, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84:1075–1081CrossRefPubMedGoogle Scholar
  14. 14.
    Bull AMJ, Amis AA (1998) The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee 5:141–158CrossRefGoogle Scholar
  15. 15.
    Colombet PD, Robinson JR (2008) Computer-assisted, anatomic, double-bundle anterior cruciate ligament reconstruction. Arthroscopy 24:1152–1160CrossRefPubMedGoogle Scholar
  16. 16.
    Csintalan RP, Ehsan A, McGarry MH, Fithian DF, Lee TQ (2006) Biomechanical and anatomical effects of an external rotational torque applied to the knee: a cadaveric study. Am J Sports Med 34:1623–1629CrossRefPubMedGoogle Scholar
  17. 17.
    Debandi A, Maeyama A, Hoshino Y, Asai S, Goto B, Smolinski P, Fu FH (2013) The effect of tunnel placement on rotational stability after ACL reconstruction: evaluation with use of triaxial accelerometry in a porcine model. Knee Surg Sport Traumatol Arthrosc 21:589–595CrossRefGoogle Scholar
  18. 18.
    Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129:353–358CrossRefPubMedGoogle Scholar
  19. 19.
    Donaldson WF, Warren RF, Wickiewicz T (1985) A comparison of acute anterior cruciate ligament examinations: initial versus examination under anesthesia. Am J Sports Med 13:5–10CrossRefPubMedGoogle Scholar
  20. 20.
    Fetto JF, Marshall JL (1979) Injury to the anterior cruciate ligament producing the pivot-shift sign. J Bone Joint Surg Am 61:710–714PubMedGoogle Scholar
  21. 21.
    Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50PubMedGoogle Scholar
  22. 22.
    Graham GP, Johnson S, Dent CM, Fairclough JA (1991) Comparison of clinical tests and the KT1000 in the diagnosis of anterior cruciate ligament rupture. Br J Sports Med 25(2):96–97CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Harilainen A (1987) Evaluation of knee instability in acute ligamentous injuries. Ann Chir Gynaecol 76:269–273PubMedGoogle Scholar
  24. 24.
    Hefti E, Müller W, Jakob RP, Stäubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sport Traumatol Arthrosc 1:226–234CrossRefGoogle Scholar
  25. 25.
    Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35:1098–1104CrossRefPubMedGoogle Scholar
  26. 26.
    Jain DK, Amaravati R, Sharma G (2009) Evaluation of the clinical signs of anterior cruciate ligament and meniscal injuries. Indian J Orthop 43:375–378CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jakob RP, Hassler H, Staeubli HU (1981) Observations on rotatory instability of the lateral compartment of the knee. Experimental studies on the functional anatomy and the pathomechanism of the true and the reversed pivot shift sign. Acta Orthop Scand Suppl 191:1–32CrossRefPubMedGoogle Scholar
  28. 28.
    Jakob RP, Stäubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69:294–299PubMedGoogle Scholar
  29. 29.
    Jensen K (1990) Manual laxity tests for anterior cruciate ligament injuries. J Orthop Sports Phys Ther 11:474–481CrossRefPubMedGoogle Scholar
  30. 30.
    Jonsson H, Riklund-Ahlström K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5-9 years after surgery. Acta Orthop Scand 75:594–599CrossRefPubMedGoogle Scholar
  31. 31.
    Katz JW, Fingeroth RJ (1986) The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med 14:88–91CrossRefPubMedGoogle Scholar
  32. 32.
    Kendoff D, Citak M, Voos J, Pearle AD (2009) Surgical navigation in knee ligament reconstruction. Clin Sports Med 28:41–50CrossRefPubMedGoogle Scholar
  33. 33.
    Kim SJ, Kim HK (1995) Reliability of the anterior drawer test, the pivot shift test, and the Lachman test. Clin Orthop Relat Res 317:237–242PubMedGoogle Scholar
  34. 34.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634CrossRefPubMedGoogle Scholar
  35. 35.
    Kopf S, Kauert R, Halfpaap J, Jung T, Becker R (2012) A new quantitative method for pivot shift grading. Knee Surg Sport Traumatol Arthrosc 20:718–723CrossRefGoogle Scholar
  36. 36.
    Kujala UM, Nelimarkka O, Koskinen SK (1992) Relationship between the pivot shift and the configuration of the lateral tibial plateau. Arch Orthop Trauma Surg 111:228–229CrossRefPubMedGoogle Scholar
  37. 37.
    Kurosaka M, Yagi M, Yoshiya S, Muratsu H, Mizuno K (1999) Efficacy of the axially loaded pivot shift test for the diagnosis of a meniscal tear. Int Orthop 23:271–274CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Labbe DR, de Guise JA, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Massé V, Ranger P, Hagemeister N (2011) Accounting for velocity of the pivot shift test manoeuvre decreases kinematic variability. Knee 18:88–93CrossRefPubMedGoogle Scholar
  39. 39.
    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43:3080–3084CrossRefPubMedGoogle Scholar
  40. 40.
    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2011) Objective grading of the pivot shift phenomenon using a support vector machine approach. J Biomech 44:1–5CrossRefPubMedGoogle Scholar
  41. 41.
    Labbé DR, Li D, Grimard G, de Guise JA, Hagemeister N (2014) Quantitative pivot shift assessment using combined inertial and magnetic sensing. Knee Surg Sport Traumatol Arthrosc 23(8):2330–2338CrossRefGoogle Scholar
  42. 42.
    Lane CG, Warren R, Pearle AD (2008) The pivot shift. J Am Acad Orthop Surg 16:679–688CrossRefPubMedGoogle Scholar
  43. 43.
    Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sport Traumatol Arthrosc 16:487–492CrossRefGoogle Scholar
  44. 44.
    Larson RL (1983) Physical examination in the diagnosis of rotatory instability. Clin Orthop Relat Res 172:38–44PubMedGoogle Scholar
  45. 45.
    Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229–236CrossRefPubMedGoogle Scholar
  46. 46.
    Lie DTT, Bull AMJ, Amis AA (2007) Persistence of the mini pivot shift after anatomically placed anterior cruciate ligament reconstruction. Clin Orthop Relat Res 457:203–209PubMedGoogle Scholar
  47. 47.
    Lopomo N, Signorelli C, Bonanzinga T, Muccioli GMM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sport Traumatol Arthrosc 20:713–717CrossRefGoogle Scholar
  48. 48.
    Lopomo N, Zaffagnini S, Amis AA (2013) Quantifying the pivot shift test: a systematic review. Knee Surg Sport Traumatol Arthrosc 21:767–783CrossRefGoogle Scholar
  49. 49.
    Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28:164–169PubMedGoogle Scholar
  50. 50.
    Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2011) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin 15(12):1323–1328CrossRefPubMedGoogle Scholar
  51. 51.
    Losee RE (1983) Concepts of the pivot shift. Clin Orthop Relat Res 172:45–51PubMedGoogle Scholar
  52. 52.
    Losee RE (1985) Diagnosis of chronic injury to the anterior cruciate ligament. Orthop Clin North Am 16:83–97PubMedGoogle Scholar
  53. 53.
    Lucie RS, Wiedel JD, Messner DG (1984) The acute pivot shift: clinical correlation. Am J Sports Med 12:189–191CrossRefPubMedGoogle Scholar
  54. 54.
    Maeyama A, Hoshino Y, Debandi A, Kato Y, Saeki K, Asai S, Goto B, Smolinski P, Fu FH (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sport Traumatol Arthrosc 19:1233–1238CrossRefGoogle Scholar
  55. 55.
    Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg Br 72:816–821PubMedGoogle Scholar
  56. 56.
    Musahl V, Hoshino Y, Ahlden M, Araujo P, Irrgang JJ, Zaffagnini S, Karlsson J, Fu FH (2012) The pivot shift: a global user guide. Knee Surg Sport Traumatol Arthrosc 20:724–731CrossRefGoogle Scholar
  57. 57.
    Ostrowski JA (2006) Accuracy of 3 diagnostic tests for anterior cruciate ligament tears. J Athl Train 41:120–121PubMedPubMedCentralGoogle Scholar
  58. 58.
    Petrigliano FA, Borgstrom PH, Kaiser WJ, McAllister DR, Markolf KL (2014) Measurements of tibial rotation during a simulated pivot shift manoeuvre using a gyroscopic sensor. Knee Surg Sport Traumatol Arthrosc 23(8):2237–2243CrossRefGoogle Scholar
  59. 59.
    Prins M (2006) The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother 52:66CrossRefPubMedGoogle Scholar
  60. 60.
    Sandberg R, Balkfors B, Henricson A, Westlin N (1986) Stability tests in knee ligament injuries. Arch Orthop Trauma Surg 106:5–7CrossRefPubMedGoogle Scholar
  61. 61.
    Scholten RJPM, Opstelten W, van der Plas CG, Bijl D, Deville WLJM, Bouter LM (2003) Accuracy of physical diagnostic tests for assessing ruptures of the anterior cruciate ligament: a meta-analysis. J Fam Pract 52:689–694PubMedGoogle Scholar
  62. 62.
    Slocum DB, James SL, Larson RL, Singer KM (1976) Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res 118:63–69PubMedGoogle Scholar
  63. 63.
    Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37:909–916CrossRefPubMedGoogle Scholar
  64. 64.
    Terry GC, Norwood LA, Hughston JC, Caldwell KM (1993) How iliotibial tract injuries of the knee combine with acute anterior cruciate ligament tears to influence abnormal anterior tibial displacement. Am J Sports Med 21:55–60CrossRefPubMedGoogle Scholar
  65. 65.
    Zaffagnini S, Lopomo N, Signorelli C, Marcheggiani Muccioli GM, Bonanzinga T, Grassi A, Visani A, Marcacci M (2013) Innovative technology for knee laxity evaluation: clinical applicability and reliability of inertial sensors for quantitative analysis of the pivot-shift test. Clin Sports Med 32:61–70CrossRefPubMedGoogle Scholar
  66. 66.
    Zaffagnini S, Muccioli GMM, Lopomo N, Signorelli C, Bonanzinga T, Musiani C, Vassilis P, Nitri M, Marcacci M (2012) Can the pivot-shift be eliminated by anatomic double-bundle anterior cruciate ligament reconstruction? Knee Surg Sport Traumatol Arthrosc 20:743–751CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi di BresciaBresciaItaly
  2. 2.Laboratorio di Biomeccanica e Innovazione TecnologicaIstituto Ortopedico RizzoliBolognaItaly
  3. 3.Dipartimento di Scienze Biomediche e NeuromotorieUniversità degli Studi di BolognaBolognaItaly

Personalised recommendations