Skip to main content

Navigating the Pivot-Shift Test

  • Chapter
  • First Online:
Rotatory Knee Instability

Abstract

The main objective of computer-assisted surgery (CAS), which can be used for several different procedures, is to improve surgical outcomes by providing real-time intraoperative information and feedback to the surgeon. One of the most widespread CAS systems is represented by the intraoperative navigation system that is considered the gold standard for knee laxity quantitative evaluation. The main disadvantage of this technique is the invasiveness of the procedure.

ACL injuries are clinically evaluated mainly using manual tests, among these the Lachman and pivot-shift (PS) tests are the most widely used. In particular, the pivot-shift test is the most specific maneuver for the detection of dynamic laxity, and its result is correlated with reduced sports activity and complete or partial ACL tear. While several methodologies have been developed to quantify pivot-shift test results, the literature reports a variety of parameters which aim to quantitatively describe the test. In particular, the analyses are focused on the lateral tibial compartment, which has been demonstrated to be the one mainly affected by the pivot-shift phenomenon. Navigation systems may allow the pivot-shift phenomenon to be decomposed into many different parameters, potentially allowing for a better understanding of knee kinematics.

Highly precise quantification of the pivot-shift phenomenon may enable a better and more individualized approach for patients. To this end it is also important to allow a preoperative-to-postoperative and injured-to-contralateral joint comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amis A, Bull A, Lie D (2005) Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Oper Tech Orthop 15(1):29–35

    Article  Google Scholar 

  2. Amis AA, Cuomo P, Rama RBS, Giron F, Bull AMJ, Rhidian T, Aglietti P (2008) Measurement of knee laxity and pivot-shift kinematics with magnetic sensors. Oper Tech Orthop 18(3):196–203

    Article  Google Scholar 

  3. Araujo PH, Ahlden M, Hoshino Y, Muller B, Moloney G, Fu FH, Musahl V (2012) Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc 20(4):692–697

    Article  PubMed  Google Scholar 

  4. Benjaminse A, Gokeler A, van der Schans CP (2006) Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther 36(5):267–288

    Article  PubMed  Google Scholar 

  5. Bignozzi S, Zaffagnini S, Lopomo N et al (2009) Does a lateral plasty control coupled translation during antero-posterior stress in single-bundle ACL reconstruction? An in vivo study. Knee Surg Sports Traumatol Arthrosc 17:65–70

    Article  PubMed  Google Scholar 

  6. Bull AM, Amis AA (1998) Knee joint motion: description and measurement. Proc Inst Mech Eng H 212(5):357–372

    Article  CAS  PubMed  Google Scholar 

  7. Bull AM, Amis AA (1998) The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee 5:141–158

    Article  Google Scholar 

  8. Bull AMJ, Earnshaw PH, Smith A et al (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84:1075–1081

    Article  CAS  PubMed  Google Scholar 

  9. Catani F, Zaffagnini S (eds) (2013) Knee surgery using computer assisted surgery and robotics. doi: 10.1007/978-3-642-31430-8, © ESSKA

  10. Colombet P, Robinson J, Christel P et al (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65

    Article  PubMed  Google Scholar 

  11. Csintalan RP, Ehsan A, Mc Garry MH, Fithian DF, Lee TQ (2006) Biomechanical and anatomical effects of an external rotational torque applied to the knee: a cadaveric study. Am J Sport Med 34(10):1623–1629

    Article  Google Scholar 

  12. Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67:720–726

    CAS  PubMed  Google Scholar 

  13. Dessene V, Lavallé S, Julliard R et al (1995) Computer-assisted knee anterior cruciate ligament reconstruction: First clinical test. J Image Guide Surg 1:59–64

    Article  Google Scholar 

  14. Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129(3):353–358

    Article  PubMed  Google Scholar 

  15. Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50

    PubMed  Google Scholar 

  16. Graham GP, Johnson S, Dent CM, Fairclough JA (1991) Comparison of clinical tests and the KT1000 in the diagnosis of anterior cruciate ligament rupture. Br J Sports Med 25(2):96–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hefti F, Müller W (1993) Current state of evaluation of knee ligament lesions. The new IKDC knee evaluation form. Orthopade 22:351–362

    CAS  PubMed  Google Scholar 

  18. Ho JY, Gardiner A, Shah V et al (2009) Equal kinematics between central anatomic single-bundle and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25:464–472

    Article  PubMed  Google Scholar 

  19. Hoshino Y, Kuroda R, Nagamune K (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35:1098–1104

    Article  PubMed  Google Scholar 

  20. Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2011) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc 21:975–980

    Article  Google Scholar 

  21. Ishibashi Y, Tsuda E, Yamamoto Y et al (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: Is the posterolateral bundle more important?”. Arthroscopy 25:488–495

    Article  PubMed  Google Scholar 

  22. Jakob RP, Stäubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69:294–299

    CAS  PubMed  Google Scholar 

  23. Jensen K (1990) Manual laxity tests for anterior cruciate ligament injuries. J Orthop Sports Phys Ther 11(10):474–481

    Article  CAS  PubMed  Google Scholar 

  24. Jonsson H, Riklund-Ahlström K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75(5):594–599

    Article  PubMed  Google Scholar 

  25. Kanaya A, Ochi M, Deie M et al (2009) Intraoperative evaluation of anteroposterior and rotational stabilities in anterior cruciate ligament reconstruction: Lower femoral tunnel placed single-bundle versus double-bundle reconstruction. Knee Surg Sports Traumatol Arthrosc 17:907–913

    Article  PubMed  Google Scholar 

  26. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after Anterior Cruciate Ligament reconstruction. Am J Sports Med 32(3):629–634

    Article  PubMed  Google Scholar 

  27. Kuroda R, Hoshino Y, Nagamune K, Kubo S, Nishimoto K, Araki D, Yamaguchi M, Yoshiva S, Kurosaka M (2008) Intraoperative measurement of pivot shift by electromagnetic sensors. Oper Tech Orthop 18(3):190–195

    Article  Google Scholar 

  28. Labbe DR, de Guise JA, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Masse V, Ranger P, Hagemeister N (2010) Accounting for velocity of the pivot shift test manoeuvre decreases kinematic variability. Knee 18(2):88–93

    Article  PubMed  Google Scholar 

  29. Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43(16):3080–3084

    Article  PubMed  Google Scholar 

  30. Lane CG, Warren RF, Stanford FC et al (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16:487–492

    Article  PubMed  Google Scholar 

  31. Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229–236

    Article  PubMed  Google Scholar 

  32. Lopomo N, Zaffagnini S, Bignozzi S et al (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28:164–169

    PubMed  Google Scholar 

  33. Lopomo N, Zaffagnini S, Amis AA (2013) Quantifying the pivot shift test: a systematic review. Knee Surg Sports Traumatol Arthrosc 21:767–783

    Article  PubMed  Google Scholar 

  34. Martelli S, Zaffagnini S, Falcioni B, Motta M (2001) Determination of an optimal kinematic protocol for computer-assisted evaluation of anterior cruciate ligament deficiency. Ann Biomed Eng 29(12):1112–1121

    Article  CAS  PubMed  Google Scholar 

  35. Martelli S, Zaffagnini S, Bignozzi S et al (2007) Description and validation of a navigation system for intra-operative evaluation of knee laxity. Comput Aided Surg 12:181–188

    Article  PubMed  Google Scholar 

  36. Martelli S, Zaffagnini S, Bignozzi S et al (2007) KIN-Nav navigation system for kinematic assessment in anterior cruciate ligament reconstruction: features, use, and perspectives. Proc Inst Mech Eng H 221:725–737

    Article  CAS  PubMed  Google Scholar 

  37. Mavrogenis AF, Savvidou OD, Mimidis G, Papanastasiou J, Koulalis D, Demertzis N, Papagelopoulos PJ (2013) Computer-assisted navigation in orthopedic surgery. Orthopedics 36(8):631–642

    Article  PubMed  Google Scholar 

  38. Monaco E, Labianca L, Conteduca F, De Carli A, Ferretti A (2007) Double bundle or single bundle plus extraarticular tenodesis in ACL reconstruction? A CAOS study. Knee Surg Sports Traumatol Arthrosc 15:1168–1174

    Article  CAS  PubMed  Google Scholar 

  39. Musahl V, Hoshino Y, Ahlden M, Araujo P, Irrgang JJ, Zaffagnini S, Karlsson J, Fu FH (2012) The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20(4):724–731

    Article  PubMed  Google Scholar 

  40. Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19(2):148–155

    Article  CAS  PubMed  Google Scholar 

  41. Pearle AD, Solomon DJ, Wanich T et al (2007) Reliability of navigated knee stability examination: A cadaveric evaluation. Am J Sports Med 35:1315–1320

    Article  PubMed  Google Scholar 

  42. Robinson J, Carrat L, Granchi C, Colombet P (2007) Influence of anterior cruciate ligament bundles on knee kinematics: clinical assessment using computer-assisted navigation. Am J Sport Med 35:2006–2013

    Article  Google Scholar 

  43. Seon JK, Park SJ, Lee KB et al (2009) Stability comparison of anterior cruciate ligament between double- and single-bundle reconstructions. Int Orthop 33:425–429

    Article  PubMed  Google Scholar 

  44. Slocum DB, James SL, Larson RL, Singer KM (1976) Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res 118:63–69

    PubMed  Google Scholar 

  45. Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37(5):909–916

    Article  PubMed  Google Scholar 

  46. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983

    Article  PubMed  Google Scholar 

  47. Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M (2006) New intraoperative protocol for kinematics evaluation of ACL reconstruction: preliminary results”. Knee Surg Sports Traumatol Arthrosc 14:811–816

    Article  CAS  PubMed  Google Scholar 

  48. Zaffagnini A, Klos TV, Bignozzi S (2010) Computer-assisted anterior cruciate ligament reconstruction: an evidence- based approach of the first 15 years. Arthroscopy 26(4):546–554

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zaffagnini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaffagnini, S. et al. (2017). Navigating the Pivot-Shift Test. In: Musahl, V., Karlsson, J., Kuroda, R., Zaffagnini, S. (eds) Rotatory Knee Instability. Springer, Cham. https://doi.org/10.1007/978-3-319-32070-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32070-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32069-4

  • Online ISBN: 978-3-319-32070-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics