Navigating the Pivot-Shift Test

  • Stefano ZaffagniniEmail author
  • Cecilia Signorelli
  • Francisco Urrizola
  • Alberto Grassi
  • Federico Raggi
  • Tommaso Roberti di Sarsina
  • Tommaso Bonanzinga
  • Nicola Lopomo


The main objective of computer-assisted surgery (CAS), which can be used for several different procedures, is to improve surgical outcomes by providing real-time intraoperative information and feedback to the surgeon. One of the most widespread CAS systems is represented by the intraoperative navigation system that is considered the gold standard for knee laxity quantitative evaluation. The main disadvantage of this technique is the invasiveness of the procedure.

ACL injuries are clinically evaluated mainly using manual tests, among these the Lachman and pivot-shift (PS) tests are the most widely used. In particular, the pivot-shift test is the most specific maneuver for the detection of dynamic laxity, and its result is correlated with reduced sports activity and complete or partial ACL tear. While several methodologies have been developed to quantify pivot-shift test results, the literature reports a variety of parameters which aim to quantitatively describe the test. In particular, the analyses are focused on the lateral tibial compartment, which has been demonstrated to be the one mainly affected by the pivot-shift phenomenon. Navigation systems may allow the pivot-shift phenomenon to be decomposed into many different parameters, potentially allowing for a better understanding of knee kinematics.

Highly precise quantification of the pivot-shift phenomenon may enable a better and more individualized approach for patients. To this end it is also important to allow a preoperative-to-postoperative and injured-to-contralateral joint comparison.


Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Navigation System Anterior Cruciate Ligament Injury International Knee Documentation Committee 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amis A, Bull A, Lie D (2005) Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Oper Tech Orthop 15(1):29–35CrossRefGoogle Scholar
  2. 2.
    Amis AA, Cuomo P, Rama RBS, Giron F, Bull AMJ, Rhidian T, Aglietti P (2008) Measurement of knee laxity and pivot-shift kinematics with magnetic sensors. Oper Tech Orthop 18(3):196–203CrossRefGoogle Scholar
  3. 3.
    Araujo PH, Ahlden M, Hoshino Y, Muller B, Moloney G, Fu FH, Musahl V (2012) Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc 20(4):692–697CrossRefPubMedGoogle Scholar
  4. 4.
    Benjaminse A, Gokeler A, van der Schans CP (2006) Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther 36(5):267–288CrossRefPubMedGoogle Scholar
  5. 5.
    Bignozzi S, Zaffagnini S, Lopomo N et al (2009) Does a lateral plasty control coupled translation during antero-posterior stress in single-bundle ACL reconstruction? An in vivo study. Knee Surg Sports Traumatol Arthrosc 17:65–70CrossRefPubMedGoogle Scholar
  6. 6.
    Bull AM, Amis AA (1998) Knee joint motion: description and measurement. Proc Inst Mech Eng H 212(5):357–372CrossRefPubMedGoogle Scholar
  7. 7.
    Bull AM, Amis AA (1998) The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee 5:141–158CrossRefGoogle Scholar
  8. 8.
    Bull AMJ, Earnshaw PH, Smith A et al (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84:1075–1081CrossRefPubMedGoogle Scholar
  9. 9.
    Catani F, Zaffagnini S (eds) (2013) Knee surgery using computer assisted surgery and robotics. doi:  10.1007/978-3-642-31430-8, © ESSKA
  10. 10.
    Colombet P, Robinson J, Christel P et al (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65CrossRefPubMedGoogle Scholar
  11. 11.
    Csintalan RP, Ehsan A, Mc Garry MH, Fithian DF, Lee TQ (2006) Biomechanical and anatomical effects of an external rotational torque applied to the knee: a cadaveric study. Am J Sport Med 34(10):1623–1629CrossRefGoogle Scholar
  12. 12.
    Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67:720–726PubMedGoogle Scholar
  13. 13.
    Dessene V, Lavallé S, Julliard R et al (1995) Computer-assisted knee anterior cruciate ligament reconstruction: First clinical test. J Image Guide Surg 1:59–64CrossRefGoogle Scholar
  14. 14.
    Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129(3):353–358CrossRefPubMedGoogle Scholar
  15. 15.
    Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50PubMedGoogle Scholar
  16. 16.
    Graham GP, Johnson S, Dent CM, Fairclough JA (1991) Comparison of clinical tests and the KT1000 in the diagnosis of anterior cruciate ligament rupture. Br J Sports Med 25(2):96–97CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hefti F, Müller W (1993) Current state of evaluation of knee ligament lesions. The new IKDC knee evaluation form. Orthopade 22:351–362PubMedGoogle Scholar
  18. 18.
    Ho JY, Gardiner A, Shah V et al (2009) Equal kinematics between central anatomic single-bundle and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25:464–472CrossRefPubMedGoogle Scholar
  19. 19.
    Hoshino Y, Kuroda R, Nagamune K (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35:1098–1104CrossRefPubMedGoogle Scholar
  20. 20.
    Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M (2011) Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc 21:975–980CrossRefGoogle Scholar
  21. 21.
    Ishibashi Y, Tsuda E, Yamamoto Y et al (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: Is the posterolateral bundle more important?”. Arthroscopy 25:488–495CrossRefPubMedGoogle Scholar
  22. 22.
    Jakob RP, Stäubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69:294–299PubMedGoogle Scholar
  23. 23.
    Jensen K (1990) Manual laxity tests for anterior cruciate ligament injuries. J Orthop Sports Phys Ther 11(10):474–481CrossRefPubMedGoogle Scholar
  24. 24.
    Jonsson H, Riklund-Ahlström K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75(5):594–599CrossRefPubMedGoogle Scholar
  25. 25.
    Kanaya A, Ochi M, Deie M et al (2009) Intraoperative evaluation of anteroposterior and rotational stabilities in anterior cruciate ligament reconstruction: Lower femoral tunnel placed single-bundle versus double-bundle reconstruction. Knee Surg Sports Traumatol Arthrosc 17:907–913CrossRefPubMedGoogle Scholar
  26. 26.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after Anterior Cruciate Ligament reconstruction. Am J Sports Med 32(3):629–634CrossRefPubMedGoogle Scholar
  27. 27.
    Kuroda R, Hoshino Y, Nagamune K, Kubo S, Nishimoto K, Araki D, Yamaguchi M, Yoshiva S, Kurosaka M (2008) Intraoperative measurement of pivot shift by electromagnetic sensors. Oper Tech Orthop 18(3):190–195CrossRefGoogle Scholar
  28. 28.
    Labbe DR, de Guise JA, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Masse V, Ranger P, Hagemeister N (2010) Accounting for velocity of the pivot shift test manoeuvre decreases kinematic variability. Knee 18(2):88–93CrossRefPubMedGoogle Scholar
  29. 29.
    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43(16):3080–3084CrossRefPubMedGoogle Scholar
  30. 30.
    Lane CG, Warren RF, Stanford FC et al (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16:487–492CrossRefPubMedGoogle Scholar
  31. 31.
    Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229–236CrossRefPubMedGoogle Scholar
  32. 32.
    Lopomo N, Zaffagnini S, Bignozzi S et al (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28:164–169PubMedGoogle Scholar
  33. 33.
    Lopomo N, Zaffagnini S, Amis AA (2013) Quantifying the pivot shift test: a systematic review. Knee Surg Sports Traumatol Arthrosc 21:767–783CrossRefPubMedGoogle Scholar
  34. 34.
    Martelli S, Zaffagnini S, Falcioni B, Motta M (2001) Determination of an optimal kinematic protocol for computer-assisted evaluation of anterior cruciate ligament deficiency. Ann Biomed Eng 29(12):1112–1121CrossRefPubMedGoogle Scholar
  35. 35.
    Martelli S, Zaffagnini S, Bignozzi S et al (2007) Description and validation of a navigation system for intra-operative evaluation of knee laxity. Comput Aided Surg 12:181–188CrossRefPubMedGoogle Scholar
  36. 36.
    Martelli S, Zaffagnini S, Bignozzi S et al (2007) KIN-Nav navigation system for kinematic assessment in anterior cruciate ligament reconstruction: features, use, and perspectives. Proc Inst Mech Eng H 221:725–737CrossRefPubMedGoogle Scholar
  37. 37.
    Mavrogenis AF, Savvidou OD, Mimidis G, Papanastasiou J, Koulalis D, Demertzis N, Papagelopoulos PJ (2013) Computer-assisted navigation in orthopedic surgery. Orthopedics 36(8):631–642CrossRefPubMedGoogle Scholar
  38. 38.
    Monaco E, Labianca L, Conteduca F, De Carli A, Ferretti A (2007) Double bundle or single bundle plus extraarticular tenodesis in ACL reconstruction? A CAOS study. Knee Surg Sports Traumatol Arthrosc 15:1168–1174CrossRefPubMedGoogle Scholar
  39. 39.
    Musahl V, Hoshino Y, Ahlden M, Araujo P, Irrgang JJ, Zaffagnini S, Karlsson J, Fu FH (2012) The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20(4):724–731CrossRefPubMedGoogle Scholar
  40. 40.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19(2):148–155CrossRefPubMedGoogle Scholar
  41. 41.
    Pearle AD, Solomon DJ, Wanich T et al (2007) Reliability of navigated knee stability examination: A cadaveric evaluation. Am J Sports Med 35:1315–1320CrossRefPubMedGoogle Scholar
  42. 42.
    Robinson J, Carrat L, Granchi C, Colombet P (2007) Influence of anterior cruciate ligament bundles on knee kinematics: clinical assessment using computer-assisted navigation. Am J Sport Med 35:2006–2013CrossRefGoogle Scholar
  43. 43.
    Seon JK, Park SJ, Lee KB et al (2009) Stability comparison of anterior cruciate ligament between double- and single-bundle reconstructions. Int Orthop 33:425–429CrossRefPubMedGoogle Scholar
  44. 44.
    Slocum DB, James SL, Larson RL, Singer KM (1976) Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res 118:63–69PubMedGoogle Scholar
  45. 45.
    Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37(5):909–916CrossRefPubMedGoogle Scholar
  46. 46.
    Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983CrossRefPubMedGoogle Scholar
  47. 47.
    Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M (2006) New intraoperative protocol for kinematics evaluation of ACL reconstruction: preliminary results”. Knee Surg Sports Traumatol Arthrosc 14:811–816CrossRefPubMedGoogle Scholar
  48. 48.
    Zaffagnini A, Klos TV, Bignozzi S (2010) Computer-assisted anterior cruciate ligament reconstruction: an evidence- based approach of the first 15 years. Arthroscopy 26(4):546–554CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Stefano Zaffagnini
    • 1
    • 2
    Email author
  • Cecilia Signorelli
    • 1
  • Francisco Urrizola
    • 3
  • Alberto Grassi
    • 1
    • 2
  • Federico Raggi
    • 1
    • 2
  • Tommaso Roberti di Sarsina
    • 1
    • 2
  • Tommaso Bonanzinga
    • 1
    • 2
  • Nicola Lopomo
    • 1
    • 4
  1. 1.Laboratorio di Biomeccanica e Innovazione TecnologicaIstituto Ortopedico RizzoliBolognaItaly
  2. 2.Clinica Ortopedica e Traumatologica IIIstituto Ortopedico RizzoliBolognaItaly
  3. 3.Servicio Traumatologia y OrtopediaHospital Las HiguerasTalcahuanoChile
  4. 4.Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi di BresciaBresciaItaly

Personalised recommendations