Advertisement

A Robotic System for Measuring the Relative Motion Between the Femur and the Tibia

  • Thomas P. BranchEmail author
  • Shaun K. Stinton
  • Jon E. Browne
  • Timothy D. Lording
  • Nathan K. deJarnette
  • William C. Hutton
Chapter

Abstract

The goal of the robotic system for measuring the relative motion between the femur and the tibia is to provide the clinician with objective parameters (numbers and graphs) which correlate with specific injuries in the knee. In this chapter the sequence of events that shaped the evolution of the robotic system is described. Several key issues that were encountered during the years of development of the robotic system are discussed, as are sources of error during biomechanical knee testing. Detail is given on the problems associated with the management of error using the robotic system. Finally, clinical examples of using the robotic system to examine two patients are presented. On balance, the robotic system allows for the reliable recording of objective parameters of the injured knee while minimizing error. The objective results obtained using the robotic system can provide the clinician with information that will allow for the best treatment plan for the patient with an injured knee.

Keywords

Robotic testing Knee laxity Rotational laxity Knee kinematics Knee biomechanics 

References

  1. 1.
    Almquist PO, Ekdahl C, Isberg PE, Fridén T (2011) Measurements of knee rotation-reliability of an external device in vivo. BMC Musculoskelet Disord 12:291CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ballantyne BT, French AK, Heimsoth SL, Kachingwe AF, Lee JB, Soderberg GL (1995) Influence of examiner experience and gender on interrater reliability of KT-1000 arthrometer measurements. Phys Ther 75:898–906PubMedGoogle Scholar
  3. 3.
    Branch TP (1992) The role of knee MRI in sports medicine: a clinical commentary on magnetic resonance imaging of the knee. Emory J Med 6Google Scholar
  4. 4.
    Branch TP, Browne JE, Siebold R, Freedberg HI, Wente TM, Jacobs CA (2011) Inconsistent manual techniques make qualitative and quantitative analyses of the pivot shift test difficult in both ACL-deficient and intact knees. 8th Biennial ISAKOS congress, Rio de Janeiro, 15–19 May 2011. Available at: http://isakos.omnibooksonline.com/2011/data/papers/papers/128.htm
  5. 5.
    Branch T, Browne J, Campbell J (2006) Restoration of normal joint play: the correlation of axial tibial rotation, anterior laxity and patient satisfaction in the anterior cruciate reconstructed knee. Presented at the 2006 ACL study group meeting, Kohala Coast, 27 Mar 2006Google Scholar
  6. 6.
    Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg HI, Arendt EA, et al (2010) Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthros 18(10):1379–1384. http://doi.org/10.1007/s00167-009-1010-y
  7. 7.
    Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J of Sports Med 13(6):401–407CrossRefGoogle Scholar
  8. 8.
    Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67(5):720–726PubMedGoogle Scholar
  9. 9.
    Espregueira-Mendes J, Pereira H, Sevivas N, Passos C, Vasconcelos JC, Monteiro A, Oliveira JM, Reis RL (2012) Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc 20:671–678CrossRefPubMedGoogle Scholar
  10. 10.
    Forster IW, Warren-Smith CD, Tew M (1989) Is the KT1000 knee ligament arthrometer reliable? J Bone Joint Surg Br 71-B:843–847Google Scholar
  11. 11.
    Gardner MJ, Altman DJ (1996) Confidence intervals rather than P-values: estimation rather than hypothesis testing. BMJ 292:746–750CrossRefGoogle Scholar
  12. 12.
    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144. http://doi.org/10.1115/1.3138397
  13. 13.
    Hastie TJ, Tibshirani R (1994) Generalized additive model. Chapman & Hall, New York, pp P60–P64Google Scholar
  14. 14.
    Jacobs et al. (2011) Females demonstrated greater valgus laxity than males during in vivo robotic knee testing. Annual meeting of the Orthopaedic Research Society. Available at: http://www.ors.org/Transactions/57/1342.pdf
  15. 15.
    Kocabey Y, Tetik O, Isbell WM et al (2004) The value of clinical examination versus magnetic resonance imaging in the diagnosis of meniscal tears and anterior cruciate ligament rupture. Arthroscopy 20:696–700, PMID: 15346110CrossRefPubMedGoogle Scholar
  16. 16.
    Kocher MS, Steadman JR, Briggs K, Zurakowski D, Sterett WI, Hawkins RJ (2002) Determinants of patient satisfaction with outcome after anterior cruciate ligament reconstruction. J Bone Joint Surg Am 84-A(9):1560–1572PubMedGoogle Scholar
  17. 17.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32(3):629–634. http://doi.org/10.1177/0363546503261722
  18. 18.
    Liu SH, Osti L, Henry M, Bocchi L (1995) The diagnosis of acute complete tears of the anterior cruciate ligament. Comparison of MRI, arthrometry and clinical examination. J Bone Joint Surg Br 77:586–588, PMID: 76515603PubMedGoogle Scholar
  19. 19.
    Madhusudhan TR, Kumar TM, Bastawrous SS, Sinha A (2008) Clinical examination, MRI and arthroscopy in meniscal and ligamentous knee injuries – a prospective study. J Orthop Surg Res 3:19CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Musahl V, Bell KM, Tsai AG et al (2007) Development of a simple device for measurement of rotational knee laxity. Knee Surg Sports Traumatol Arthrosc 15:1009–1012CrossRefPubMedGoogle Scholar
  21. 21.
    Nikolaou VS, Chronopoulou E, Savvidou C, Plessas S, Giannoudis P, Efstathopoulos N, Papachristou G (2008) MRI efficacy in diagnosing internal lesions of the knee: a retrospective analysis. J Trauma Manag Outcomes 2:4CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19:148–155, PMID: 2039066CrossRefPubMedGoogle Scholar
  23. 23.
    Noyes FR, Cummings JF, Grood ES et al (1991) The diagnosis of knee motion limits, subluxations, and ligament injury. Am J Sports Med 19:163–171, PMID: 2039068CrossRefPubMedGoogle Scholar
  24. 24.
    O’Shea KJ, Murphy KP, Heekin RD, Herzwurm PJ (1996) The diagnostic accuracy of history, physical examination, and radiographs in the evaluation of traumatic knee disorders. Am J Sports Med 24:164–167, PMID: 8775114CrossRefPubMedGoogle Scholar
  25. 25.
    Peeler J, Leiter J, MacDonald P (2010) Accuracy and reliability of anterior cruciate ligament clinical examination in a multidisciplinary sports medicine setting. Clin J Sport Med 20:80–85, PMID: 20215888CrossRefPubMedGoogle Scholar
  26. 26.
    Poole C (1987) Beyond the confidence interval. Am J Public Health 77(20):195–199CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shultz SJ, Shimokochi Y, Nguyen AD et al (2007) Measurement of varus-valgus and internal-external rotational knee laxities in vivo-part I: assessment of measurement reliability and bilateral asymmetry. J Orthop Res 25(8):981–988CrossRefPubMedGoogle Scholar
  28. 28.
    Tsai AG, Musahl V, Steckel H et al (2008) Rotational knee laxity: reliability if a simple measurement device in vivo. BMC Musculoskelet Disord 9:35CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tyler TF, McHugh MP, Gleim GW, Nicholas SJ (1999) Association of KT-1000 measurements with clinical tests of knee stability 1 year following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 29(9):540–545CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Thomas P. Branch
    • 1
    Email author
  • Shaun K. Stinton
    • 2
  • Jon E. Browne
    • 3
  • Timothy D. Lording
    • 4
  • Nathan K. deJarnette
    • 2
  • William C. Hutton
    • 5
  1. 1.University OrthopedicsDecaturUSA
  2. 2.ERMI Inc.AtlantaUSA
  3. 3.Orthopaedic & Sports Medicine Clinic of Kansas CityLeawoodUSA
  4. 4.Melbourne Orthopaedic GroupWindsorAustralia
  5. 5.Department of OrthopaedicsEmory University School of MedicineAtlantaUSA

Personalised recommendations