Advertisement

The KneeKG System

  • Bujar Shabani
  • Dafina Bytyqi
  • Laurence Cheze
  • Philippe Neyret
  • Sébastien LustigEmail author
Chapter
  • 1.1k Downloads

Abstract

Accurately quantifying knee joint motion is not simple. Skin movement over the medial and lateral femoral condyles is the greatest obstacle to obtaining accurate movement data noninvasively. The KneeKG system was developed with the objective of providing high-reliability movement analysis. The KneeKG system noninvasively quantifies knee abduction/adduction, axial rotation, and relative translation of the tibia and femur. The average accuracy of the acquisition is 0.4° for abduction/adduction, 2.3° for axial rotation, 2.4 mm for anteroposterior translation, and 1.1 mm for axial translation. This clinical tool enables an accurate and objective assessment of the tri-planar function of the knee joint. The measured biomechanical parameters are sensitive to changes in gait due to knee osteoarthritis and ACL deficiency. This system has the potential to improve understanding of the biomechanical consequences of trauma or degenerative changes of the knee as well as more accurately quantify rotational laxity as detected by a positive pivot-shift test.

Keywords

Anterior Cruciate Ligament Anterior Cruciate Ligament Reconstruction Anterior Cruciate Ligament Injury Gait Cycle Anterior Cruciate Ligament Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sell TC, Ferris CM, Abt JP, Tsai YS, Myers JB, Fu FH, Lephart SM (2006) The effect of direction and reaction on the neuro- muscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism. Am J Sports Med 34:43–54CrossRefPubMedGoogle Scholar
  2. 2.
    Lustig S, Magnussen RA, Cheze L, Neyret P (2012) The KneeKG system: a review of the literature. Knee Surg Sports Traumatol Arthrosc 20:633–638CrossRefPubMedGoogle Scholar
  3. 3.
    Sati M, de Guise JA, Larouche S (1996) Quantitative assessment of skin- bone movement at the knee. Knee 3:179–190CrossRefGoogle Scholar
  4. 4.
    Sati M, de Guise JA, Larouche S (1996) Improving in vivo knee kinematic measurements: application to prosthetic ligament analysis. Knee 3:179–190CrossRefGoogle Scholar
  5. 5.
    Sati M, de Guise JA, Drouin G (1997) Computer assisted knee surgery: diagnostics and planning of knee surgery. Comput Aided Surg 2:108–123CrossRefPubMedGoogle Scholar
  6. 6.
    Ganjikia S, Duval N, Yahia L, de Guise J (2000) Three-dimensional knee analyzer validation by simple fluoroscopic study. Knee 7:221–231CrossRefPubMedGoogle Scholar
  7. 7.
    Hagemeister N, Yahia L’H, Duval N, de Guise J (1999) In vivo reproducibility of a new non-invasive diagnostic tool for the three dimensional knee evaluation. Knee 6:175–181CrossRefGoogle Scholar
  8. 8.
    Hagemeister N, Parent G, Van de Putte M, St-Onge N, Duval N, de Guise J (2005) A reproducible method for studying three- dimensional knee kinematics. J Biomech 38:1926–1931CrossRefPubMedGoogle Scholar
  9. 9.
    Labbe DR, Hagemeister N, Tremblay M, de Guise J (2008) Reliability of a method for analyzing three-dimensional knee kinematics during gait. Gait Posture 28:170–174CrossRefPubMedGoogle Scholar
  10. 10.
    St-Onge N, Chevalier Y, Hagemeister N, Van De Putte M, De Guise J (2004) Effect of ski binding parameters on knee biomechanics: a three-dimensional computational study. Med Sci Sports Exerc 36:1218–1225CrossRefPubMedGoogle Scholar
  11. 11.
    Fuentes AHHI, Sudhoff I, Fernandes J, Ranger P, de Guise JA (2007) New 3D biomechanical and imaging technologies to evaluate the effect of anterior cruciate ligament reconstructions: preliminary results. Clin J Sport Med 17:165Google Scholar
  12. 12.
    Fuentes A, Hagemeister N, Ranger P, Heron T, de Guise JA (2011) Gait adaptation in chronic anterior cruciate ligament- deficient patients: pivot-shift avoidance gait. Clin Biomech (Bristol, Avon) 26:181–187Google Scholar
  13. 13.
    Shabani B, Bytyqi D, Lustig S, Cheze L, Bytyqi C, Neyret P (2015) Gait changes of the ACL-deficient knee 3D kinematic assessment. Knee Surg Sports Traumatol Arthrosc 23:3259–3265CrossRefPubMedGoogle Scholar
  14. 14.
    Shabani B, Bytyqi D, Lustig S, Cheze L, Bytyqi C, Neyret P (2015) Gait knee kinematics after ACL reconstruction: 3D assessment. Int Orthop 39(6):1187–1193CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Bujar Shabani
    • 1
  • Dafina Bytyqi
    • 1
  • Laurence Cheze
    • 2
  • Philippe Neyret
    • 1
  • Sébastien Lustig
    • 1
    Email author
  1. 1.Department of OrthopaedicAlbert Trillat Center, Lyon North University HospitalLyonFrance
  2. 2.Laboratoire de Biomécanique et Mécanique des Chocs Université Lyon 1 - IFSTTAR, LBMC UMR_T9406PittsburghUSA

Personalised recommendations