Advertisement

Static Rotational Knee Laxity Measurements

  • Caroline Mouton
  • Daniel Theisen
  • Romain SeilEmail author
Chapter
  • 1.1k Downloads

Abstract

Static rotational knee laxity measurements have the advantages of precisely quantifying laxity and are thus potentially more objective than manual tests. Moreover, they can help to establish the diagnosis of knee injuries and to evaluate the success of reconstruction procedures after surgical intervention. As a consequence, they may systematically be part of follow-up to knee injuries (i.e. anterior cruciate ligament injuries). Numerous devices to measure knee rotation in a non-invasive manner exist. Although further efforts are necessary to improve the use of rotational laxity measurements in daily clinical practice, existing data on static rotational knee laxity measurements is encouraging to further investigate it in healthy and injured persons. Rotational knee laxity measurements allow (1) for the evaluation of the physiological knee laxity as a risk factor for knee injuries and poor reconstruction outcomes, (2) for the diagnosis of knee injuries (i.e. anterior cruciate ligament injuries) and (3) to follow knee ligament reconstructions postoperatively. The lack of knowledge of rotational knee laxity measurements in injured/reconstructed knees, however, prevents us to conclude the best treatment or reconstruction techniques. The present chapter aims to analyse the current knowledge and the potential for rotational knee laxity measurements to follow and individualise care for knee injuries and diseases.

Keywords

Knee laxity Static measurements Instrumented Tibiofemoral rotation Diagnosis Reconstruction 

References

  1. 1.
    Alam M, Bull AM, Thomas R, Amis AA (2013) A clinical device for measuring internal-external rotational laxity of the knee. Am J Sports Med 41(1):87–94PubMedCrossRefGoogle Scholar
  2. 2.
    Alam M, Bull AM, Thomas RD, Amis AA (2011) Measurement of rotational laxity of the knee: in vitro comparison of accuracy between the tibia, overlying skin, and foot. Am J Sports Med 39(12):2575–2581PubMedCrossRefGoogle Scholar
  3. 3.
    Almquist PO, Arnbjornsson A, Zatterstrom R, Ryd L, Ekdahl C, Friden T (2002) Evaluation of an external device measuring knee joint rotation: an in vivo study with simultaneous Roentgen stereometric analysis. J Orthop Res 20(3):427–432PubMedCrossRefGoogle Scholar
  4. 4.
    Almquist PO, Ekdahl C, Isberg PE, Friden T (2011) Measurements of knee rotation-reliability of an external device in vivo. BMC Musculoskelet Disord 12:291PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Almquist PO, Ekdahl C, Isberg PE, Friden T (2013) Knee rotation in healthy individuals related to age and gender. J Orthop Res 31(1):23–28PubMedCrossRefGoogle Scholar
  6. 6.
    Andersen HN, Dyhre-Poulsen P (1997) The anterior cruciate ligament does play a role in controlling axial rotation in the knee. Knee Surg Sports Traumatol Arthrosc 5(3):145–149PubMedCrossRefGoogle Scholar
  7. 7.
    Baxter MP (1988) Assessment of normal pediatric knee ligament laxity using the genucom. J Pediatr Orthop 8(5):546–550PubMedCrossRefGoogle Scholar
  8. 8.
    Beighton P, Horan F (1969) Orthopaedic aspects of the Ehlers-Danlos syndrome. J Bone Joint Surg Br 51(3):444–453PubMedGoogle Scholar
  9. 9.
    Benjaminse A, Gokeler A, van der Schans CP (2006) Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sports Phys Ther 36(5):267–288PubMedCrossRefGoogle Scholar
  10. 10.
    Bignozzi S, Zaffagnini S, Lopomo N, Fu FH, Irrgang JJ, Marcacci M (2010) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18(1):37–42PubMedCrossRefGoogle Scholar
  11. 11.
    Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg HI, Arendt EA, Lavoie F, Neyret P, Jacobs CA (2010) Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc 18(10):1379–1384PubMedCrossRefGoogle Scholar
  12. 12.
    Branch TP, Siebold R, Freedberg HI, Jacobs CA (2011) Double-bundle ACL reconstruction demonstrated superior clinical stability to single-bundle ACL reconstruction: a matched-pairs analysis of instrumented tests of tibial anterior translation and internal rotation laxity. Knee Surg Sports Traumatol Arthrosc 19(3):432–440PubMedCrossRefGoogle Scholar
  13. 13.
    Coplan JA (1989) Rotational motion of the knee: a comparison of normal and pronating subjects. J Orthop Sports Phys Ther 10(9):366–369PubMedCrossRefGoogle Scholar
  14. 14.
    Csintalan RP, Inacio MC, Funahashi TT (2008) Incidence rate of anterior cruciate ligament reconstructions. Perm J 12(3):17–21PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Desai N, Bjornsson H, Musahl V, Bhandari M, Petzold M, Fu FH, Samuelsson K (2014) Anatomic single- versus double-bundle ACL reconstruction: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 22(5):1009–1023PubMedCrossRefGoogle Scholar
  16. 16.
    Di Iorio A, Carnesecchi O, Philippot R, Farizon F (2014) Multiscale analysis of anterior cruciate ruptures: prospective study of 49 cases. Orthop Traumatol Surg Res 100(7):751–754PubMedCrossRefGoogle Scholar
  17. 17.
    Flynn JM, Mackenzie W, Kolstad K, Sandifer E, Jawad AF, Galinat B (2000) Objective evaluation of knee laxity in children. J Pediatr Orthop 20(2):259–263PubMedGoogle Scholar
  18. 18.
    George MS, Dunn WR, Spindler KP (2006) Current concepts review: revision anterior cruciate ligament reconstruction. Am J Sports Med 34(12):2026–2037PubMedCrossRefGoogle Scholar
  19. 19.
    Granan LP, Forssblad M, Lind M, Engebretsen L (2009) The Scandinavian ACL registries 2004-2007: baseline epidemiology. Acta Orthop 80(5):563–567PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Grood ES, Stowers SF, Noyes FR (1988) Limits of movement in the human knee. Effect of sectioning the posterior cruciate ligament and posterolateral structures. J Bone Joint Surg Am 70(1):88–97PubMedGoogle Scholar
  21. 21.
    Halewood C, Amis AA (2015) Clinically relevant biomechanics of the knee capsule and ligaments. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-015-3594-8 PubMedGoogle Scholar
  22. 22.
    Higuchi H, Terauchi M, Kimura M, Kobayashi A, Takeda M, Watanabe H, Takagishi K (2003) The relation between static and dynamic knee stability after ACL reconstruction. Acta Orthop Belg 69(3):257–266PubMedGoogle Scholar
  23. 23.
    Hinton RY, Rivera VR, Pautz MJ, Sponseller PD (2008) Ligamentous laxity of the knee during childhood and adolescence. J Pediatr Orthop 28(2):184–187PubMedCrossRefGoogle Scholar
  24. 24.
    Hofbauer M, Valentin P, Kdolsky R, Ostermann RC, Graf A, Figl M, Aldrian S (2010) Rotational and translational laxity after computer-navigated single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(9):1201–1207PubMedCrossRefGoogle Scholar
  25. 25.
    Hsieh HH, Walker PS (1976) Stabilizing mechanisms of the loaded and unloaded knee joint. J Bone Joint Surg Am 58(1):87–93PubMedGoogle Scholar
  26. 26.
    Hsu WH, Fisk JA, Yamamoto Y, Debski RE, Woo SL (2006) Differences in torsional joint stiffness of the knee between genders: a human cadaveric study. Am J Sports Med 34(5):765–770PubMedCrossRefGoogle Scholar
  27. 27.
    Jakob RP, Staubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br 69(2):294–299PubMedGoogle Scholar
  28. 28.
    Johannsen HV, Lind T, Jakobsen BW, Kroner K (1989) Exercise-induced knee joint laxity in distance runners. Br J Sports Med 23(3):165–168PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kim SJ, Choi DH, Mei Y, Hwang BY (2011) Does physiologic posterolateral laxity influence clinical outcomes of anterior cruciate ligament reconstruction? J Bone Joint Surg Am 93(21):2010–2014PubMedCrossRefGoogle Scholar
  30. 30.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32(3):629–634PubMedCrossRefGoogle Scholar
  31. 31.
    Lam MH, Fong DT, Yung PS, Chan KM (2012) Biomechanical techniques to evaluate tibial rotation. A systematic review. Knee Surg Sports Traumatol Arthrosc 20(9):1720–1729PubMedCrossRefGoogle Scholar
  32. 32.
    Lane JG, Irby SE, Kaufman K, Rangger C, Daniel DM (1994) The anterior cruciate ligament in controlling axial rotation. An evaluation of its effect. Am J Sports Med 22(2):289–293PubMedCrossRefGoogle Scholar
  33. 33.
    LaPrade RF, Johansen S, Wentorf FA, Engebretsen L, Esterberg JL, Tso A (2004) An analysis of an anatomical posterolateral knee reconstruction: an in vitro biomechanical study and development of a surgical technique. Am J Sports Med 32(6):1405–1414PubMedCrossRefGoogle Scholar
  34. 34.
    Lee MC, Seong SC, Lee S, Chang CB, Park YK, Jo H, Kim CH (2007) Vertical femoral tunnel placement results in rotational knee laxity after anterior cruciate ligament reconstruction. Arthroscopy 23(7):771–778PubMedCrossRefGoogle Scholar
  35. 35.
    Lorbach O, Kieb M, Brogard P, Maas S, Pape D, Seil R (2012) Static rotational and sagittal knee laxity measurements after reconstruction of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 20(5):844–850PubMedCrossRefGoogle Scholar
  36. 36.
    Lorbach O, Pape D, Maas S, Zerbe T, Busch L, Kohn D, Seil R (2010) Influence of the anteromedial and posterolateral bundles of the anterior cruciate ligament on external and internal tibiofemoral rotation. Am J Sports Med 38(4):721–727PubMedCrossRefGoogle Scholar
  37. 37.
    Lorbach O, Wilmes P, Maas S, Zerbe T, Busch L, Kohn D, Seil R (2009) A non-invasive device to objectively measure tibial rotation: verification of the device. Knee Surg Sports Traumatol Arthrosc 17(7):756–762PubMedCrossRefGoogle Scholar
  38. 38.
    Lorbach O, Wilmes P, Theisen D, Brockmeyer M, Maas S, Kohn D, Seil R (2009) Reliability testing of a new device to measure tibial rotation. Knee Surg Sports Traumatol Arthrosc 17(8):920–926PubMedCrossRefGoogle Scholar
  39. 39.
    Markolf KL, Graves BR, Sigward SM, Jackson SR, McAllister DR (2007) Effects of posterolateral reconstructions on external tibial rotation and forces in a posterior cruciate ligament graft. J Bone Joint Surg Am 89(11):2351–2358PubMedCrossRefGoogle Scholar
  40. 40.
    Markolf KL, Kochan A, Amstutz HC (1984) Measurement of knee stiffness and laxity in patients with documented absence of the anterior cruciate ligament. J Bone Joint Surg Am 66(2):242–252PubMedGoogle Scholar
  41. 41.
    McCarthy M, Camarda L, Wijdicks CA, Johansen S, Engebretsen L, Laprade RF (2010) Anatomic posterolateral knee reconstructions require a popliteofibular ligament reconstruction through a tibial tunnel. Am J Sports Med 38(8):1674–1681PubMedCrossRefGoogle Scholar
  42. 42.
    McQuade KJ, Crutcher JP, Sidles JA, Larson RV (1989) Tibial rotation in anterior cruciate deficient knees: an in vitro study. J Orthop Sports Phys Ther 11(4):146–149PubMedCrossRefGoogle Scholar
  43. 43.
    McQuade KJ, Sidles JA, Larson RV (1989) Reliability of the genucom knee analysis system. A pilot study. Clin Orthop Relat Res 245:216–219PubMedGoogle Scholar
  44. 44.
    Mouton C, Seil R, Agostinis H, Maas S, Theisen D (2012) Influence of individual characteristics on static rotational knee laxity using the Rotameter. Knee Surg Sports Traumatol Arthrosc 20(4):645–651PubMedCrossRefGoogle Scholar
  45. 45.
    Mouton C, Seil R, Meyer T, Agostinis H, Theisen D (2014) Combined anterior and rotational laxity measurements allow characterizing personal knee laxity profiles in healthy individuals. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-014-3244-6 PubMedCentralGoogle Scholar
  46. 46.
    Mouton C, Theisen D, Meyer T, Agostinis H, Nuhrenborger C, Pape D, Seil R (2015) Noninjured knees of patients with noncontact ACL injuries display higher average anterior and internal rotational knee laxity compared with healthy knees of a noninjured population. Am J Sports Med 43(8):1918–1923PubMedCrossRefGoogle Scholar
  47. 47.
    Mouton C, Theisen D, Meyer T, Agostinis H, Nührenbörger C, Pape D, Seil R (2015) Combined anterior and rotational knee laxity measurements improve the diagnosis of anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-015-3757-7 Google Scholar
  48. 48.
    Mouton C, Theisen D, Pape D, Nuhrenborger C, Seil R (2012) Static rotational knee laxity in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 20(4):652–662PubMedCrossRefGoogle Scholar
  49. 49.
    Musahl V, Bell KM, Tsai AG, Costic RS, Allaire R, Zantop T, Irrgang JJ, Fu FH (2007) Development of a simple device for measurement of rotational knee laxity. Knee Surg Sports Traumatol Arthrosc 15(8):1009–1012PubMedCrossRefGoogle Scholar
  50. 50.
    Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38(8):1591–1597PubMedCrossRefGoogle Scholar
  51. 51.
    Musahl V, Seil R, Zaffagnini S, Tashman S, Karlsson J (2012) The role of static and dynamic rotatory laxity testing in evaluating ACL injury. Knee Surg Sports Traumatol Arthrosc 20(4):603–612PubMedCrossRefGoogle Scholar
  52. 52.
    Myklebust G, Bahr R (2005) Return to play guidelines after anterior cruciate ligament surgery. Br J Sports Med 39(3):127–131PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nielsen S, Ovesen J, Rasmussen O (1984) The anterior cruciate ligament of the knee: an experimental study of its importance in rotatory knee instability. Arch Orthop Trauma Surg 103(3):170–174PubMedCrossRefGoogle Scholar
  54. 54.
    Oliver JH, Coughlin LP (1987) Objective knee evaluation using the Genucom Knee Analysis System. Clinical implications. Am J Sports Med 15(6):571–578PubMedCrossRefGoogle Scholar
  55. 55.
    Park HS, Wilson NA, Zhang LQ (2008) Gender differences in passive knee biomechanical properties in tibial rotation. J Orthop Res 26(7):937–944PubMedCrossRefGoogle Scholar
  56. 56.
    Pollet V, Barrat D, Meirhaeghe E, Vaes P, Handelberg F (2005) The role of the Rolimeter in quantifying knee instability compared to the functional outcome of ACL-reconstructed versus conservatively-treated knees. Knee Surg Sports Traumatol Arthrosc 13(1):12–18PubMedCrossRefGoogle Scholar
  57. 57.
    Rupp S, Muller B, Seil R (2001) Knee laxity after ACL reconstruction with a BPTB graft. Knee Surg Sports Traumatol Arthrosc 9(2):72–76PubMedCrossRefGoogle Scholar
  58. 58.
    Salmon LJ, Russell VJ, Refshauge K, Kader D, Connolly C, Linklater J, Pinczewski LA (2006) Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med 34(5):721–732PubMedCrossRefGoogle Scholar
  59. 59.
    Shoemaker SC, Markolf KL (1982) In vivo rotatory knee stability. Ligamentous and muscular contributions. J Bone Joint Surg Am 64(2):208–216PubMedGoogle Scholar
  60. 60.
    Shultz SJ, Carcia CR, Perrin DH (2004) Knee joint laxity affects muscle activation patterns in the healthy knee. J Electromyogr Kinesiol 14(4):475–483PubMedCrossRefGoogle Scholar
  61. 61.
    Shultz SJ, Dudley WN, Kong Y (2012) Identifying multiplanar knee laxity profiles and associated physical characteristics. J Athl Train 47(2):159–169PubMedPubMedCentralGoogle Scholar
  62. 62.
    Shultz SJ, Kirk SE, Johnson ML, Sander TC, Perrin DH (2004) Relationship between sex hormones and anterior knee laxity across the menstrual cycle. Med Sci Sports Exerc 36(7):1165–1174PubMedCrossRefGoogle Scholar
  63. 63.
    Shultz SJ, Levine BJ, Nguyen AD, Kim H, Montgomery MM, Perrin DH (2010) A comparison of cyclic variations in anterior knee laxity, genu recurvatum, and general joint laxity across the menstrual cycle. J Orthop Res 28(11):1411–1417PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Shultz SJ, Sander TC, Kirk SE, Perrin DH (2005) Sex differences in knee joint laxity change across the female menstrual cycle. J Sports Med Phys Fitness 45(4):594–603PubMedPubMedCentralGoogle Scholar
  65. 65.
    Shultz SJ, Schmitz RJ (2009) Effects of transverse and frontal plane knee laxity on hip and knee neuromechanics during drop landings. Am J Sports Med 37(9):1821–1830PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Shultz SJ, Schmitz RJ, Beynnon BD (2011) Variations in varus/valgus and internal/external rotational knee laxity and stiffness across the menstrual cycle. J Orthop Res 29(3):318–325PubMedCrossRefGoogle Scholar
  67. 67.
    Shultz SJ, Schmitz RJ, Cone JR, Copple TJ, Montgomery MM, Pye ML, Tritsch AJ (2013) Multiplanar knee laxity increases during a 90-min intermittent exercise protocol. Med Sci Sports Exerc 45(8):1553–1561PubMedCrossRefGoogle Scholar
  68. 68.
    Shultz SJ, Schmitz RJ, Cone JR, Henson RA, Montgomery MM, Pye ML, Tritsch AJ (2015) Changes in fatigue, multiplanar knee laxity, and landing biomechanics during intermittent exercise. J Athl Train 50(5):486–497PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Shultz SJ, Schmitz RJ, Nguyen AD, Levine BJ (2010) Joint laxity is related to lower extremity energetics during a drop jump landing. Med Sci Sports Exerc 42(4):771–780PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007) Measurement of varus-valgus and internal-external rotational knee laxities in vivo – part I: assessment of measurement reliability and bilateral asymmetry. J Orthop Res 25(8):981–988PubMedCrossRefGoogle Scholar
  71. 71.
    Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007) Measurement of varus-valgus and internal-external rotational knee laxities in vivo – part II: relationship with anterior-posterior and general joint laxity in males and females. J Orthop Res 25(8):989–996PubMedCrossRefGoogle Scholar
  72. 72.
    Slocum DB, Larson RL (2007) Rotatory instability of the knee: its pathogenesis and a clinical test to demonstrate its presence. 1968. Clin Orthop Relat Res 454:5–13; discussion 13–14PubMedCrossRefGoogle Scholar
  73. 73.
    Stoller DW, Markolf KL, Zager SA, Shoemaker SC (1983) The effects of exercise, ice, and ultrasonography on torsional laxity of the knee. Clin Orthop Relat Res 174:172–180PubMedGoogle Scholar
  74. 74.
    Tardy N, Mouton C, Boisrenoult P, Theisen D, Beaufils P, Seil R (2014) Rotational profile alterations after anatomic posterolateral corner reconstructions in multiligament injured knees. Knee Surg Sports Traumatol Arthrosc 22(9):2173–2180PubMedCrossRefGoogle Scholar
  75. 75.
    Torry MR, Myers C, Pennington WW, Shelburne KB, Krong JP, Giphart JE, Steadman JR, Woo SL (2011) Relationship of anterior knee laxity to knee translations during drop landings: a bi-plane fluoroscopy study. Knee Surg Sports Traumatol Arthrosc 19(4):653–662PubMedCrossRefGoogle Scholar
  76. 76.
    Tsai AG, Musahl V, Steckel H, Bell KM, Zantop T, Irrgang JJ, Fu FH (2008) Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord 9:35PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Uh BS, Beynnon BD, Churchill DL, Haugh LD, Risberg MA, Fleming BC (2001) A new device to measure knee laxity during weightbearing and non-weightbearing conditions. J Orthop Res 19(6):1185–1191PubMedCrossRefGoogle Scholar
  78. 78.
    Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31(6):831–842PubMedGoogle Scholar
  79. 79.
    Veltri DM, Deng XH, Torzilli PA, Warren RF, Maynard MJ (1995) The role of the cruciate and posterolateral ligaments in stability of the knee. A biomechanical study. Am J Sports Med 23(4):436–443PubMedCrossRefGoogle Scholar
  80. 80.
    Wada M, Imura S, Baba H, Shimada S (1996) Knee laxity in patients with osteoarthritis and rheumatoid arthritis. Br J Rheumatol 35(6):560–563PubMedCrossRefGoogle Scholar
  81. 81.
    Wang CJ, Walker PS (1974) Rotatory laxity of the human knee joint. J Bone Joint Surg Am 56(1):161–170PubMedGoogle Scholar
  82. 82.
    Weir JP (2005) Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res 19(1):231–240PubMedGoogle Scholar
  83. 83.
    Wolf JM, Cameron KL, Owens BD (2011) Impact of joint laxity and hypermobility on the musculoskeletal system. J Am Acad Orthop Surg 19(8):463–471PubMedCrossRefGoogle Scholar
  84. 84.
    Woodford-Rogers B, Cyphert L, Denegar CR (1994) Risk factors for anterior cruciate ligament injury in high school and college athletes. J Athl Train 29(4):343–346PubMedPubMedCentralGoogle Scholar
  85. 85.
    Zarins B, Rowe CR, Harris BA, Watkins MP (1983) Rotational motion of the knee. Am J Sports Med 11(3):152–156PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Caroline Mouton
    • 1
    • 2
  • Daniel Theisen
    • 1
  • Romain Seil
    • 1
    • 2
    Email author
  1. 1.Sports Medicine Research LaboratoryLuxembourg Institute of HealthLuxembourg CityLuxembourg
  2. 2.Sports ClinicCentre Hospitalier Luxembourg – Clinique d’EichLuxembourg CityLuxembourg

Personalised recommendations